Take the first 9 is in yours tens place so you want to take the second 9 and round up because anything 5 or more goes up and 4 or less stays the same
Answer:
<u>Domain:</u>
The domain of this can be any value between 0 to 565 miles per hour
<u>Range:</u>
The reasonable range can be the distance traveled which can be from 0 to 13,560 miles (no plane travel is longer than 24 hours, we assume).
Step-by-step explanation:
Domain is the input, set of x values for the function.
Range is the output, set of y values for the function.
This isn't a function essentially, but it is given that an Airplane travels at 565 miles per hour.
<em>We can say that the domain will be the speed of the airplane and the range would be the distance it travels.</em>
<em />
<u>Domain:</u>
The domain of this can be any value between 0 to 565 miles per hour
<u>Range:</u>
The reasonable range can be the distance traveled which can be from 0 to (565*24=13,560 miles) 13,560 miles (no plane travel is longer than 24 hours, we assume).
Answer:
110.979
Step-by-step explanation:
62.7% * 177 = 0.627 * 177 = 110.979
Answer:
The answer is below
Step-by-step explanation:
The horizontal asymptote of a function f(x) is gotten by finding the limit as x ⇒ ∞ or x ⇒ -∞. If the limit gives you a finite value, then your asymptote is at that point.
![\lim_{x \to \infty} f(x)=A\\\\or\\\\ \lim_{x \to -\infty} f(x)=A\\\\where\ A\ is\ a\ finite\ value.\\\\Given\ that \ f(x) =25000(1+0.025)^x\\\\ \lim_{x \to \infty} f(x)= \lim_{x \to \infty} [25000(1+0.025)^x]= \lim_{x \to \infty} [25000(1.025)^x]\\=25000 \lim_{x \to \infty} [(1.025)^x]=25000(\infty)=\infty\\\\ \lim_{x \to -\infty} f(x)= \lim_{x \to -\infty} [25000(1+0.025)^x]= \lim_{x \to -\infty} [25000(1.025)^x]\\=25000 \lim_{x \to -\infty} [(1.025)^x]=25000(0)=0\\\\](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20f%28x%29%3DA%5C%5C%5C%5Cor%5C%5C%5C%5C%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20f%28x%29%3DA%5C%5C%5C%5Cwhere%5C%20A%5C%20is%5C%20a%5C%20finite%5C%20value.%5C%5C%5C%5CGiven%5C%20that%20%5C%20f%28x%29%20%3D25000%281%2B0.025%29%5Ex%5C%5C%5C%5C%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20f%28x%29%3D%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5B25000%281%2B0.025%29%5Ex%5D%3D%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5B25000%281.025%29%5Ex%5D%5C%5C%3D25000%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5B%281.025%29%5Ex%5D%3D25000%28%5Cinfty%29%3D%5Cinfty%5C%5C%5C%5C%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20f%28x%29%3D%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20%5B25000%281%2B0.025%29%5Ex%5D%3D%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20%5B25000%281.025%29%5Ex%5D%5C%5C%3D25000%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20%5B%281.025%29%5Ex%5D%3D25000%280%29%3D0%5C%5C%5C%5C)

5.815 equals to 5815\1000