Full moon
A lunar eclipse can occur only at full moon. A total lunar eclipse can happen only when the sun, Earth and moon are perfectly lined up — anything less than perfection creates a partial lunar eclipse or no eclipse at all.
Answer:

Explanation:
A radioactive isotope is an isotope that undergoes nuclear decay, breaking apart into a smaller nucleus and emitting radiation during the process.
The half-life of an isotope is the amount of time it takes for a certain quantity of a radioactive isotope to halve.
For a radioactive isotope, the amount of substance left after a certain time t is:
(1)
where
is the mass of the substance at time t = 0
m(t) is the mass of the substance at time t
is the half-life of the isotope
In this problem, the isotope is uranium-235, which has a half-life of

We also know that the amount of uranium left in the rock sample is 6.25% of its original value, this means that

Substituting into (1) and solving for t, we can find how much time has passed:

Answer:
monochlorinated products: 4
dichlorinated products: 12
Explanation:
Chlorination of alkanes is a reaction that takes place when the chlorine is in presence of light. This actually decomposes the chlorine, and one atom of Chlorine substracts an hydrogen from the alkane. Now, this hydrogen substracted comes usually from the most substitued carbon, because it's more stable (A tertiary carbon is more stable than a secondary carbon, and this more stable than primary).
When this happens, the other chlorine atom, goes as electrophyle in that carbon and formed the chlorinated product. Now, although a tertiary carbon is more stable, we can still have (in minor quantities) chlorinated products that comes from a secondary and primary carbon. The first picture shows the general mechanism of the chlorination, and the possible products for a monochlorinated.
The second picture shows the possible dichlorinated products, which are in higher quantities than the monochlorinated basicallu because of the variety of positions the chlorine can be. So, second picture shows all the products.
Answer:
4 biological membranes.
Explanation:
So in total, your water molecule has to go through your cell membrane, reach the outer membrane of your chloroplast and then through the inner membrane, and then lastly, it has to go through your thylakoid membrane to reach its final destination of the illumine. So in total 4 biological membranes.