Answer:
The volume of the gas is 2.80 L.
Explanation:
An ideal gas is a theoretical gas that is considered to be made up of point particles that move randomly and do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
The Pressure (P) of a gas on the walls of the container that contains it, the Volume (V) it occupies, the Temperature (T) at which it is located and the amount of substance it contains (number of moles, n) are related from the equation known as Equation of State of Ideal Gases:
P*V = n*R*T
where R is the constant of ideal gases.
In this case:
- P= 2 atm
- V= ?
- n=0.223 moles
- R= 0.0821

- T=33 °C= 306 °K (being O°C= 273°K)
Replacing:
2 atm* V= 0.223 moles*0.0821
* 306 K
Solving:

V= 2.80 L
<u><em>The volume of the gas is 2.80 L.</em></u>
Answer: Option (c) is the correct answer.
Explanation:
Backbone in a nucleic acids strand is made up of sugar molecules attached with phosphodiester bond.
This sugar-phosphate linkage helps in joining of nucleotides in a DNA sequence. Due to this backbone structural framework of nucleotides is formed. In DNA, the sugar is deoxyribose.
Thus, we can conclude that the backbone in a nucleic acids strand is called sugar backbone.
Lithium Hydroxide (LiOH) is an Arrhenius base
<span>they assign a numerical date to each rock layer studied.</span>
The answer is enough solvent to make 1.00 L of solution. Since molarity is the number of moles of solute in one liter of solution, adding 0.500 mole solute to one liter solvent might not result to a solution with one liter total volume. Less than one liter solvent is first added to dissolve 0.500 mole solute and then the solution is carefully filled with more solvent until the solution reaches to one liter total volume. Hence, the resulting solution is a 0.500M concentration.