Answer:
Time of flight A is greatest
Explanation:
Let u₁ , u₂, u₃ be their initial velocity and θ₁ , θ₂ and θ₃ be their angle of projection. They all achieve a common highest height of H.
So
H = u₁² sin²θ₁ /2g
H = u₂² sin²θ₂ /2g
H = u₃² sin²θ₃ /2g
On the basis of these equation we can write
u₁ sinθ₁ =u₂ sinθ₂=u₃ sinθ₃
For maximum range we can write
D = u₁² sin2θ₁ /g
1.5 D = u₂² sin2θ₂ / g
2 D =u₃² sin2θ₃ / g
1.5 D / D = u₂² sin2θ₂ /u₁² sin2θ₁
1.5 = u₂ cosθ₂ /u₁ cosθ₁ ( since , u₁ sinθ₁ =u₂ sinθ₂ )
u₂ cosθ₂ >u₁ cosθ₁
u₂ sinθ₂ < u₁ sinθ₁
2u₂ sinθ₂ / g < 2u₁ sinθ₁ /g
Time of flight B < Time of flight A
Similarly we can prove
Time of flight C < Time of flight B
Hence Time of flight A is greatest .
Answer:
mass of ball 1=m1
mass of ball 2=m2
velocity of ball=r1w1
velocity of ball 2=r2w2
Total angular momentum=m1*v1+m2*v2
but
v1=r1*w1
v2=r2*w2
Substitute values in above equation
Total angular momentum of the system=m1*r1*w1+m2*r2*w2
Answer:
16.4287
Explanation:
The force and displacement are related by Hooke's law:
F = kΔx
The period of oscillation of a spring/mass system is:
T = 2π√(m/k)
First, find the value of k:
F = kΔx
78 N = k (98 m)
k = 0.796 N/m
Next, find the mass of the unknown weight.
F = kΔx
m (9.8 m/s²) = (0.796 N/m) (67 m)
m = 5.44 kg
Finally, find the period.
T = 2π√(m/k)
T = 2π√(5.44 kg / 0.796 N/m)
T = 16.4287 s
Speed = Distance ÷ Time so divide .5 km by .1h. .5 km÷.1h=5 km/h, so the answer is B. 5km/h.
Answer:
The horizontal component of the velocity is 21.9 m/s.
Explanation:
Please see the attached figure for a better understanding of the problem.
Notice that the vector v and its x and y-components (vx and vy) form a right triangle. Then, we can use trigonometry to find the magnitude of vx, the horizontal component of the velocity.
To find vx, let´s use the following trigonometric rule of right triangles:
cos α = adjacent / hypotenuse
cos 5.7° = vx / 22 m/s
22 m/s · cos 5.7° = vx
vx = 21.9 m/s
The horizontal component of the velocity is 21.9 m/s.