Answer:
Step-by-step explanation:
1.
cot x sec⁴ x = cot x+2 tan x +tan³x
L.H.S = cot x sec⁴x
=cot x (sec²x)²
=cot x (1+tan²x)² [ ∵ sec²x=1+tan²x]
= cot x(1+ 2 tan²x +tan⁴x)
=cot x+ 2 cot x tan²x+cot x tan⁴x
=cot x +2 tan x + tan³x [ ∵cot x tan x
=1]
=R.H.S
2.
(sin x)(tan x cos x - cot x cos x)=1-2 cos²x
L.H.S =(sin x)(tan x cos x - cot x cos x)
= sin x tan x cos x - sin x cot x cos x

= sin²x -cos²x
=1-cos²x-cos²x
=1-2 cos²x
=R.H.S
3.
1+ sec²x sin²x =sec²x
L.H.S =1+ sec²x sin²x
=
[
]
=1+tan²x ![[\frac{\textrm{sin x}}{\textrm{cos x}} = \textrm{tan x}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7B%5Ctextrm%7Bsin%20x%7D%7D%7B%5Ctextrm%7Bcos%20x%7D%7D%20%3D%20%5Ctextrm%7Btan%20x%7D%5D)
=sec²x
=R.H.S
4.

L.H.S=



= 2 csc x
= R.H.S
5.
-tan²x + sec²x=1
L.H.S=-tan²x + sec²x
= sec²x-tan²x
=


=1
Answer:
(c) {13,16,30}
Step-by-step explanation:
In order for the sides lengths to form a triangle, the sum of the shortest two must exceed the longest.
That will not be the case for ...
{13, 16, 30}
because 13 +16 = 29 < 30.
(13, 16, 30} could not form a triangle
__
For more on the subject, see ...
brainly.com/question/26258903
What’s the assignment on? I’ll dm you give me your username
The problem factored is (x-8)(x-3)
You can answer this problem by solving backwards. she read for 1 hour and 15 minutes so start with 1 hour before she left. 1 hour before 3:23 is 2:23. Now subtract the 15 minutes from that 15 minutes before 2:23 is 2:08.
Therefore the time is 2:08pm.