Answer:
The 99% confidence interval for the difference between the mean fill volumes at the two locations is;
-0.1175665 L < μ₁ - μ₂ < 0.1295665 L
Step-by-step explanation:
The number of bottles in the sample at the first location, n₁ = 18 bottles
The mean fill volume,
= 2.007 L
The standard deviation, σ₁ = 0.010 L
The number of bottles in the sample at the second location, n₂ = 10 bottles
The mean fill volume,
= 2.001 L
The standard deviation, σ₂ = 0.012 L
The nature of the variance of the two samples = Equal variance
The confidence interval of the statistics, C = 99%
The difference between the mean

(1 - C)/2 = (1 - 0.99)/2 = 0.005, the degrees of freedom, f = n₁ - 1 = 10 - 1 = 9
∴
= 3.25
Therefore, we have;

Therefore, we have the difference of the two means given as follows;
-0.1175665 L < μ₁ - μ₂ < 0.1295665 L