Answer:
6 orbitals
Explanation:
you take the total number of orbitals there would normally be and add that to three and you get a total of 6 orbitals in axial.
HClO, perchloric acid is a weak acid. Unlike strong acids like HCl or H2SO4 it not dissociate completely but partially such that an equilibrium exists between the dissociated ions and the undissociated acid. The equilibrium is as shown below:
HClO + H2O ↔ H3O⁺ + ClO⁻
Since HClO is a weak acid, the reverse reaction is favored over the forward reaction. Thus apart from water, HClO will be present in large amounts.
Answer:
5.81L
Explanation:
N1 = 1.70 moles
V1 = 3.80L
V2 = ?
N2 = 2.60 moles
Mole - volume relationship,
N1 / V1 = N2 / V2
V2 = (N2 × V1) / N1
V2 = (2.60 × 3.80) / 1.70
V2 = 9.88 / 1.70
V2 = 5.81 L
The volume of the gas is 5.81L
According to this formula:
Q = M*C*ΔT
when we have M ( the mass of water) = 200 g
and C ( specific heat capacity ) of water = 4.18 J/gC
ΔT (the difference in temperature) = Tf - Ti
= 100 - 24
= 76°C
So by substitution:
Q = 200 g * 4.18 J/gC * 76 °C
= 63536 J
∴ the amount of heat which be added and absorbed to raise the temp from 24°C to 100°C is = 63536 J
The elements whose electron configurations end with f electrons are in the Lanthanide and Actinide series: those long series at the bottom of the Periodic Table (see image).
The atoms are adding electrons into f orbitals, but the f electrons are not always the last electrons in the electron configuration.
For example, the electron configuration of Eu is [Xe]6s²4f⁷, but that of Gd
is [Xe] 6s²4f⁷5d.
I have blocked off in <em>red</em> all the <em>exceptions</em> like Gd.