Answer:
C. straight
Step-by-step explanation:
A Linear Pair is two adjacent angles whose non-common sides form opposite rays.
If two angles form a linear pair, the angles are supplementary.
A linear pair forms a straight angle which contains 180º, so you have 2 angles whose measures add to 180, which means they are supplementary.
In the figure given in attachment, AB and BC are two non common sides of ∠ABD and ∠DBC.
∠1 and ∠2 form a linear pair.
The line through points A, B and C is a straight line.
∠1 and ∠2 are supplementary.
Thus two non-common sides of adjacent supplementary angles form a <u>straight</u> angle.
Answer:
1) The solution of the system is

2) The solution of the system is

Step-by-step explanation:
1) To solve the system of equations

using the row reduction method you must:
Step 1: Write the augmented matrix of the system
![\left[ \begin{array}{ccc|c} 0 & 3 & -5 & 89 \\\\ 6 & 0 & 1 & 17 \\\\ 1 & -1 & 8 & -107 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%200%20%26%203%20%26%20-5%20%26%2089%20%5C%5C%5C%5C%206%20%26%200%20%26%201%20%26%2017%20%5C%5C%5C%5C%201%20%26%20-1%20%26%208%20%26%20-107%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 2: Swap rows 1 and 2
![\left[ \begin{array}{ccc|c} 6 & 0 & 1 & 17 \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%206%20%26%200%20%26%201%20%26%2017%20%5C%5C%5C%5C%200%20%26%203%20%26%20-5%20%26%2089%20%5C%5C%5C%5C%201%20%26%20-1%20%26%208%20%26%20-107%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 3: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%203%20%26%20-5%20%26%2089%20%5C%5C%5C%5C%201%20%26%20-1%20%26%208%20%26%20-107%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 4: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%203%20%26%20-5%20%26%2089%20%5C%5C%5C%5C%200%20%26%20-1%20%26%20%5Cfrac%7B47%7D%7B6%7D%20%26%20-%20%5Cfrac%7B659%7D%7B6%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 5: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%20-%20%5Cfrac%7B5%7D%7B3%7D%20%26%20%5Cfrac%7B89%7D%7B3%7D%20%5C%5C%5C%5C%200%20%26%20-1%20%26%20%5Cfrac%7B47%7D%7B6%7D%20%26%20-%20%5Cfrac%7B659%7D%7B6%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 6: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & \frac{37}{6} & - \frac{481}{6} \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%20-%20%5Cfrac%7B5%7D%7B3%7D%20%26%20%5Cfrac%7B89%7D%7B3%7D%20%5C%5C%5C%5C%200%20%26%200%20%26%20%5Cfrac%7B37%7D%7B6%7D%20%26%20-%20%5Cfrac%7B481%7D%7B6%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 7: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%20-%20%5Cfrac%7B5%7D%7B3%7D%20%26%20%5Cfrac%7B89%7D%7B3%7D%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-13%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 8: 
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%205%20%5C%5C%5C%5C%200%20%26%201%20%26%20-%20%5Cfrac%7B5%7D%7B3%7D%20%26%20%5Cfrac%7B89%7D%7B3%7D%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-13%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 9: 
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%205%20%5C%5C%5C%5C%200%20%26%201%20%26%200%20%26%208%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-13%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 10: Rewrite the system using the row reduced matrix:
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right] \rightarrow \left\begin{array}{ccc}x_1&=&5\\x_2&=&8\\x_3&=&-13\end{array}\right](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%205%20%5C%5C%5C%5C%200%20%26%201%20%26%200%20%26%208%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-13%20%5Cend%7Barray%7D%20%5Cright%5D%20%5Crightarrow%20%5Cleft%5Cbegin%7Barray%7D%7Bccc%7Dx_1%26%3D%265%5C%5Cx_2%26%3D%268%5C%5Cx_3%26%3D%26-13%5Cend%7Barray%7D%5Cright)
2) To solve the system of equations

using the row reduction method you must:
Step 1:
![\left[ \begin{array}{ccc|c} 4 & -1 & 3 & 12 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%204%20%26%20-1%20%26%203%20%26%2012%20%5C%5C%5C%5C%202%20%26%200%20%26%209%20%26%20-5%20%5C%5C%5C%5C%201%20%26%204%20%26%206%20%26%20-32%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 2: 
![\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B3%7D%7B4%7D%20%26%203%20%5C%5C%5C%5C%202%20%26%200%20%26%209%20%26%20-5%20%5C%5C%5C%5C%201%20%26%204%20%26%206%20%26%20-32%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 3: 
![\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 1 & 4 & 6 & -32 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B3%7D%7B4%7D%20%26%203%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%20%26%20%5Cfrac%7B15%7D%7B2%7D%20%26%20-11%20%5C%5C%5C%5C%201%20%26%204%20%26%206%20%26%20-32%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 4: 
![\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B3%7D%7B4%7D%20%26%203%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%20%26%20%5Cfrac%7B15%7D%7B2%7D%20%26%20-11%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B17%7D%7B4%7D%20%26%20%5Cfrac%7B21%7D%7B4%7D%20%26%20-35%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 5: 
![\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B3%7D%7B4%7D%20%26%203%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B17%7D%7B4%7D%20%26%20%5Cfrac%7B21%7D%7B4%7D%20%26%20-35%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 6: 
![\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%20%5Cfrac%7B9%7D%7B2%7D%20%26%20-%20%5Cfrac%7B5%7D%7B2%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B17%7D%7B4%7D%20%26%20%5Cfrac%7B21%7D%7B4%7D%20%26%20-35%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 7: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & - \frac{117}{2} & \frac{117}{2} \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B9%7D%7B2%7D%20%26%20-%20%5Cfrac%7B5%7D%7B2%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%200%20%26%20-%20%5Cfrac%7B117%7D%7B2%7D%20%26%20%5Cfrac%7B117%7D%7B2%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 8: 
![\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%20%5Cfrac%7B9%7D%7B2%7D%20%26%20-%20%5Cfrac%7B5%7D%7B2%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-1%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 9: 
![\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%200%20%26%202%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-1%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 10: 
![\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%200%20%26%202%20%5C%5C%5C%5C%200%20%26%201%20%26%200%20%26%20-7%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-1%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 11:
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]\rightarrow \left\begin{array}{ccc}x_1&=&2\\x_2&=&-7\\x_3&=&-1\end{array}\right](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%202%20%5C%5C%5C%5C%200%20%26%201%20%26%200%20%26%20-7%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-1%20%5Cend%7Barray%7D%20%5Cright%5D%5Crightarrow%20%5Cleft%5Cbegin%7Barray%7D%7Bccc%7Dx_1%26%3D%262%5C%5Cx_2%26%3D%26-7%5C%5Cx_3%26%3D%26-1%5Cend%7Barray%7D%5Cright)
Answer:
5
Step-by-step explanation:
First, find the equation of the line:
put it in the form y = mx + b where m is the slope and b is the y-intercept
You already have m = 2, so y = 2x + b.
Then, since you know (1, 3) is a solution so you can plug x = 1 and y = 3 into the equation to find out what b is.
3 = 2 * 1 + b
3 = 2 + b
1 = b
This means the equation of the line is y = 2x + 1.
Then, since you're trying to find out what y is when x = 2, you can plug in x = 2 into the equation:
y = 2 * 2 + 1
y = 4 + 1
y = 5
5 is the answer
The rectangle length is 16.5 cm.
The rectangle width is 5.5 cm.
Pick any two points
(0, 3), (-1,9)
Find slope (y2-y1)/(x2-x1)
(9-3)/(-1-0) = 6/-1 = -6
Y = -6x + b
Plug in a point
3 = 0 + b, b= 3
Final equation: y = -6x + 3