Answer:
h = 4 in
Explanation:
GIVEN DATA:
volume of tin
we know that
volume of cylinder is
so,
construct formula for surface area
minimize the function wrt h
solving for h we have
we kow so
h = 4 in
Answer:
(a) V = 0.75 m/s
(b) V = 0.125 m/s
Explanation:
The speed of the flow of the river can be given by following formula:
V = Q/A
V = Q/w d
where,
V = Speed of Flow of River
Q = Volume Flow Rate of River
w = width of river
d = depth of river
A = Area of Cross-Section of River = w d
(a)
Here,
Q = (300,000 L/s)(0.001 m³/1 L) = 300 m³/s
w = 20 m
d = 20 m
Therefore,
V = (300 m³/s)/(20 m)(20 m)
<u>V = 0.75 m/s</u>
<u></u>
(b)
Here,
Q = (300,000 L/s)(0.001 m³/1 L) = 300 m³/s
w = 60 m
d = 40 m
Therefore,
V = (300 m³/s)/(60 m)(40 m)
<u>V = 0.125 m/s</u>
Answer:
P₁ = 2.3506 10⁵ Pa
Explanation:
For this exercise we use Bernoulli's equation and continuity, where point 1 is in the hose and point 2 in the nozzle
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
A₁ v₁ = A₂ v₂
Let's look for the areas
r₁ = d₁ / 2 = 2.25 / 2 = 1,125 cm
r₂ = d₂ / 2 = 0.2 / 2 = 0.100 cm
A₁ = π r₁²
A₁ = π 1.125²
A₁ = 3,976 cm²
A₂ = π r₂²
A₂ = π 0.1²
A₂ = 0.0452 cm²
Now with the continuity equation we can look for the speed of water inside the hose
v₁ = v₂ A₂ / A₁
v₁ = 11.2 0.0452 / 3.976
v₁ = 0.1273 m / s
Now we can use Bernoulli's equation, pa pressure at the nozzle is the air pressure (P₂ = Patm) the hose must be on the floor so the height is zero (y₁ = 0)
P₁ + ½ ρ v₁² = Patm + ½ ρ v₂² + ρ g y₂
P₁ = Patm + ½ ρ (v₂² - v₁²) + ρ g y₂
Let's calculate
P₁ = 1.013 10⁵ + ½ 1000 (11.2² - 0.1273²) + 1000 9.8 7.25
P₁ = 1.013 10⁵ + 6.271 10⁴ + 7.105 10⁴
P₁ = 2.3506 10⁵ Pa
Answer:
497.6 N
Explanation:
From the question,
The net force on the skydiver = weight of the skydiver- the resistive force of air
F' = W-F...................... Equation 1
Where W = weight of the skydiver, F = resistive force of air.
But,
W = mg................ Equation 2
Where m = mass of the skydiver, g = acceleration due to gravity.
Substitute equation 2 into equation 1
F' = mg-F............ Equation 3
Given: m = 87 kg, F = 355 N, g = 9.8 m/s²
Substitute these values into equation 3
F' = 87(9.8)-355
F' = 852.6-355
F' = 487.6 N