The final velocity is 2.7 m/s
Explanation:
We can solve this problem by using the principle of conservation of momentum: in fact, in absence of external forces, the total momentum of the system must be conserved before and after the collision.
Therefore we can write:
where:
is the mass of the putty
is the initial velocity of the putty (we take its direction as positive direction)
is the mass of the ball
is the initial velocity of the ball (at rest)
is the final combined velocity of the two putty+ball
Re-arranging the equation and substituting the values, we find the final combined velocity:
And the positive sign indicates their final direction is the same as the initial direction of the putty.
Learn more about momentum here:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
40 meters times 1 meter over 100 centimeters equals 0.4 meters. 1.3 meters + 40 centimeters =. 1.3 m + 0.4 m = 1.7 m. The answer is 1.7 meters
Effort force
Explanation:
When the potion of fulcrum and weight is changed, the mechanical advantage changes.Increasing the distance between the fulcrum and the effort, there is a proportion increase in effort required to lift a load.The ration of the distance from the fulcrum to the position of input and output application gives the mechanical advantage in levers when losses due to friction are not considered.
Learn More
Mechanical advantage in Levers : brainly.com/question/11600677
Keywords : Levers, fulcrum, position
#LearnwithBrainly
Answer: a) 139.4 μV; b) 129.6 μV
Explanation: In order to solve this problem we have to use the Ohm law given by:
V=R*I whre R= ρ *L/A where ρ;L and A are the resistivity, length and cross section of teh wire.
Then we have:
for cooper R=1.71 *10^-8* 1.8/(0.001628)^2= 11.61 * 10^-3Ω
and for silver R= 1.58 *10^-8* 1.8/(0.001628)^2=10.80 * 10^-3Ω
Finalle we calculate the potential difference (V) for both wires:
Vcooper=11.62* 10^-3* 12 * 10^-3=139.410^-6 V
V silver= 10.80 10^-3* 12 * 10^-3=129.6 10^-6 V
UV Radiation since it has a higher frequency than the others. The higher the frequency the shorter the wavelength.