1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Angelina_Jolie [31]
3 years ago
14

A spring is 14cm long. Three masses are hung from it and then it is measured again. Now it is 19.5cm long. What force did the th

ree masses provide? The spring constant for the spring is 30N/m.
Physics
1 answer:
lukranit [14]3 years ago
3 0

Answer:

Gravity

Explanation:

The answer is gravity because when the 3 masses were hung from the spring, gravity pulled the spring towards the ground.

You might be interested in
A student uses 60 Newtons of force to climb 18 meters in 6 seconds. Calculate her Power.
puteri [66]

Answer:

15

Explanation:

P=W/T

T=6sec

W=?

F=60N

S=18m

W=F X S. .s indicate displacement

W=60x18

W=108

So p=108 j/6sec

P=15watt

5 0
3 years ago
A light wave travels through air at a speed of 3.0x108 m/s. Green light has a wavelength of about 5.76x1014Hz. What is the wavel
solong [7]

Answer:

521 nm

Explanation:

Given the values and units we are given, I'm assuming  5.76*10^14 Hz is frequency.

The formula to use here is λ * υ = c, where λ is wavelength, υ is frequency, and c is the speed of light.

λ = \frac{3*10^8\frac{m}{s} }{5.76*10^{14}Hz} = {5.20833*10^{-7} m}\approx{521 *10^{-9}m}={521 nm}

4 0
3 years ago
In a second experiment, you decide to connect a string which has length L from a pivot to the side of block A (which has width d
Salsk061 [2.6K]

Answer:

The answer is in the explanation

Explanation:

A)

i) The blocks will come to rest when all their initial kinetic energy is dissipated by the friction force acting on them. Since block A has higher initial kinetic energy, on account of having larger mass, therefore one can argue that block A will go farther befoe coming to rest.

ii) The force on friction acting on the blocks is proportional to their mass, since mass of block B is less than block A, the force of friction acting on block B is also less. Hence, one might argue that block B will go farther along the table before coming to rest.

B) The equation of motion for block A is

m_{A}\frac{\mathrm{d} v}{\mathrm{d} t} = -m_{A}g\nu_{s}\Rightarrow \frac{\mathrm{d} v}{\mathrm{d} t} = -\nu_{s}g \quad (1)

Here, \nu_{s} is the coefficient of friction between the block and the surface of the table. Equation (1) can be easily integrated to get

v(t) = C-\nu_{s}gt \quad (2)

Here, C is the constant of integration, which can be determined by using the initial condition

v(t=0) = v_{0}\Rightarrow C = v_{0} \quad (3)

Hence

v(t) = v_{0} - \nu_{s}gt \quad (4)

Block A will stop when its velocity will become zero,i.e

0 = v_{0}-\nu_{s}gT\Rightarrow T = \frac{v_{0}}{\nu_{s}g} \quad (5)

Going back to equation (4), we can write it as

\frac{\mathrm{d} x}{\mathrm{d} t} = v_{0}-\nu_{s}gt\Rightarrow x(t) = v_{0}t-\nu_{s}g\frac{t^{2}}{2}+D \quad (6)

Here, x(t) is the distance travelled by the block and D is again a constant of integration which can be determined by imposing the initial condition

x(t=0) = 0\Rightarrow D = 0 \quad (7)

The distance travelled by block A before stopping is

x(t=T) = v_{0}T-\nu_{s}g\frac{T^{2}}{2} = v_{0}\frac{v_{0}}{\nu_{s}g}-\nu_{s}g\frac{v_{0}^{2}}{2\nu_{s}^{2}g^{2}} = \frac{v_{0}^{2}}{2\nu_{s}g} \quad (8)

C) We can see that the expression for the distance travelled for block A is independent of its mass, therefore if we do the calculation for block B we will get the same result. Hence the reasoning for Student A and Student B are both correct, the effect of having larger initial energy due to larger mass is cancelled out by the effect of larger frictional force due to larger mass.

D)

i) The block A is moving in a circle of radius L+\frac{d}{2} , centered at the pivot, this is the distance of pivot from the center of mass of the block (assuming the block has uniform mass density). Because of circular motion there must be a centripetal force acting on the block in the radial direction, that must be provided by the tension in the string. Hence

T = \frac{m_{A}v^{2}}{L+\frac{d}{2}} \quad (9)

The speed of the block decreases with time due to friction, hence the speed of the block is maximum at the beginning of the motion, therfore the maximum tension is

T_{max} = \frac{m_{A}v_{0}^{2}}{L+\frac{d}{2}} \quad (10)

ii) The forces acting on the block are

a) Tension: Acting in the radially inwards direction, hence it is always perpendicular to the velocity of the block, therefore it does not change the speed of the block.

b) Friction: Acting tangentially, in the direction opposite to the velocity of the block at any given time, therefore it decreases the speed of the block.

The speed decreases linearly with time in the same manner as derived in part (C), using the expression for tension in part (D)(i) we can see that the tension in the string also decreases with time (in a quadratic manner to be specific).

8 0
3 years ago
an object weighs 98 n on earth. How much does it weigh on planet x where the acceleration due to gravity in 6 m/s^2
Degger [83]
60 N because 98N=mg (here g= 9.8 on earth) thus mass can be calculated which is 98/9.8 = 10kg Now,new weight with g = 6m/s^2 =m×g' (here g' is new acceleration of the new planet) = 10×6=60N
7 0
3 years ago
Read 2 more answers
What material are you most likely to find in the D horizon
statuscvo [17]

you're most likely to find Bedrock

7 0
3 years ago
Read 2 more answers
Other questions:
  • A double-slit interference pattern is observed on a screen 1.0 m behind two slits spaced 0.30 mm apart. From the center of one p
    11·2 answers
  • A cup of coffee sits on the dashboard of an automobile. Even though you hold the cup still, as the car goes around a sharp curve
    9·2 answers
  • A moped has a mass of 120kg . It accelerates at a rate of 2 m/s^2 . What is the size of the resultant force acting on it ?
    12·1 answer
  • An astronaut drops a rock on the surface of an asteroid.The rock is released from rest at a height of 0.86 m above the ground, a
    6·1 answer
  • Suppose you have 50 grams of isotope with a half life of 2 years. How much is the isotope will you have after 4 years
    9·1 answer
  • ? A body is suspended from the ceiling with two wires that make an angle of 40° with the ceiling. The weight of the body is 150N
    8·1 answer
  • A car traveling 24.5 m/s runs over a cliff and lands 8 m away from the base. how high is the cliff?
    10·1 answer
  • A boy is pedaling his bicycle at a velocity of 0.20km/ minute . How far will he travel in 2.5 hours
    8·2 answers
  • Which diagram is the best representation of gas molecules in a closed container? A. Diagram A B. Diagram B C. Diagram C D. Diagr
    6·1 answer
  • A child rides a carousel with a radius of5.1 that rotates with a constant speed of2.2 m/s. Calculate the magnitude of the centri
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!