Center.........................
The mass of Jupiter is 1.9 x 1027 kg.
Answer:
plz write your questions in English
Answer:
(a) 3.807 s
(b) 145.581 m
Explanation:
Let Δt = t2 - t1 be the time it takes from the moment when the motorcycle starts to accelerate until it catches up with the car. We know that before the acceleration, both vehicles are travelling at a constant speed. So they would maintain a distance of 58 m prior to the acceleration.
The distance traveled by car after Δt (seconds) at
speed is

The distance traveled by the motorcycle after Δt (seconds) at
speed and acceleration of a = 8 m/s2 is


We know that the motorcycle catches up to the car after Δt, so it must have covered the distance that the car travels, plus their initial distance:





(b)


Answer:
The volume of copper is 2.198 ml
Explanation:
Given;
mass of copper, m = 20 g
density of copper, ρ = 9.1 g/ml
Density is given by;
Density = mass / volume
Volume = mass / density
Volume = (20 g) / (9.1 g/ml)
Volume = 2.198 ml
Therefore, the volume of copper is 2.198 ml