distance from the Sun of 2.77 astronomical units or about 414 million km 257 million miles and orbiting period of 4.62 years
Answer:
El peso de la persona B es la mitad del peso de la persona A.
Explanation:
El peso de la persona B puede calcularse con la siguiente ecuación:
(1)
En donde:
: es la masa de la persona B
g: es la gravedad
Dado que la persona B tiene la mitad de la masa de la persona A, tenemos:
(2)
En donde:
: es la masa de la persona A
Al introducir la ecuación (2) en (1) nos queda:
(3)
Sabemos que el peso de la persona A está dado por:
(4)
Entonces, al introducir la ecuación (4) en (3) tenemos:
Por lo tanto, el peso de la persona B es la mitad del peso de la persona A.
Espero que te sea de utilidad!
Answer:
Explanation:
14 m/s
Explanation:
The motion of the book is a free fall motion, so it is an uniformly accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. Therefore we can find the final velocity by using the equation:
where
u = 0 is the initial speed
g = 9.8 m/s^2 is the acceleration
d = 10.0 m is the distance covered by the book
Substituting data, we find
The Earth's radius is 6371 km. So that's our distance from the center when we're on the surface.
The Shuttle astronaut's distance from the center, when s/he's in orbit, is 330 km greater ... that's 6701 km.
The force of gravity is inversely proportional to the distance between the center of the Earth and the center of the astronaut. So, in orbit, it's
(6371/6701)^2 = 90.4 %
of its value on the surface.
Thank you for posting your question here at brainly. I think your question is incomplete. Below is the complete question, it can be found elsewhere:
What is the probability of finding an electron within one Bohr radius of the nucleus?<span>Consider an electron within the 1s orbital of a hydrogen atom. The normalized probability of finding the electron within a sphere of a radius R centered at the nucleus is given by 1-a0^2[a0^2-e^(-2R/a0)(a0^2+2a0R+2R2)]. Where a0 is the Bohr radius (for a hydrogen atom, a0 = 0.529 Å.). What is the probability of finding an electron within one Bohr radius of the nucleus? What is the probability of finding an electron of the hydrogen atom within a 2.30a0 radius of the hydrogen nucleus?
Below is the answer:
</span><span>you plug the values for A0 and R into your formula</span>