^2\left(\frac{d}{dx}\left(\frac{\partial }{\partial x}\left(\right)\right)\right)^'\frac{\partial }{\partial x}\left(\log _{ }\l
eft(\right)\right)\int \:\sqrt{\sqrt[\int _{ }^{ }\:]{}}\lim _{x\to \infty }\left(\le \ge \right)\sum _{n=0}^{\infty }\:\infty \theta \theta \cdot \div \left(f\:\circ \:g\right)f\left(x\right)\ln \left(e^{\int _{\lim _{x\to \infty }\left(\sin \left(\cos \left(\tan \left(\cot \left(\csc \left(\sec \left(\sec \left(\right)\right)\right)\right)\right)\right)\right)\right)}^{ }\:}\right)
2 answers:
Answer:
ok what
Step-by-step explanation:
You might be interested in
1)8
2)3
3)1
4)14
the coefficient is the number in front of the variable
Replace f(x) with x⁸
1) f(x) + 2 → x⁸ + 2
2) 3f(x) → 3x⁸
3) f(-x) → (-x)⁸
4) f(x - 2) → (x - 2)⁸
→ 
Answer:
Your answer is: 19k - 7
Simplify the expression.
Step-by-step explanation:
Hope this helped : )