Answer:
For w = 18 units perimeter is minimum
P = 2(18 + w)
Step-by-step explanation:
Given;
Area of the rectangle = 324 units²
P is the perimeter
w is the width
Let L be the length of the rectangle
therefore,
P = 2(L + w) ............(1)
also,
Lw = 324
or
L =
..........(2)
substituting 2 in 1
P = 
now,
for minimizing the perimeter
= 0
or
= 0
or
= 0
or
= -1
or
w² = 324
or
w = 18 units
For w = 18 units perimeter is minimum
therefore,
from 2
L = 
or
L = 18 units
objective function for P is:
P = 2(18 + w)

![{3}^{8 \frac{1}{4} x} \\ = {3}^{8} \times {3}^{ \frac{1}{4}x } \\ = {3}^{8} \times \sqrt[4x]{3}](https://tex.z-dn.net/?f=%7B3%7D%5E%7B8%20%5Cfrac%7B1%7D%7B4%7D%20x%7D%20%20%5C%5C%20%20%3D%20%20%7B3%7D%5E%7B8%7D%20%20%5Ctimes%20%20%7B3%7D%5E%7B%20%5Cfrac%7B1%7D%7B4%7Dx%20%7D%20%20%5C%5C%20%20%3D%20%20%7B3%7D%5E%7B8%7D%20%20%5Ctimes%20%20%5Csqrt%5B4x%5D%7B3%7D%20)
I cannot see the choices, but here are a couple solutions, depending on what you meant.
2.99 because if you divide that you will get it
11 I think because they started with 12 got three more then loaned 4 out
Answer:
b) in the vertex.
Step-by-step explanation:
In the vertex. If the parabola opens up or down the axis of symmetry is x = a where a is the x coordinate of the vertex.
If it opens to the left or right the axis is y = a where a is the y-coordinate if the vertex.