1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cluponka [151]
3 years ago
6

Ng the Percent of a Number 1. What is 5% of 60 ?

Mathematics
2 answers:
Igoryamba3 years ago
7 0
The answer is 3. Hope this helps and pls give thanks!
kompoz [17]3 years ago
5 0

Answer:

3

Step-by-step explanation:

5% = 5/100 = 0.05

60*0.05 = 3

You might be interested in
X
erica [24]

Answer: 67.725feet²

Step-by-step explanation:

A heptagon consist of 7 sides and Its area is calculated using the formula

= 1/2 × nsr

n = number of sides = 7

s = side length = 4.3

r = apothem = 4.5

Area = 1/2 × nsr

= 1/2 × 7 × 4.3 × 4.5

= 0.5 × 7 × 4.3 × 4.5

= 67.725feet²

7 0
3 years ago
4. How many real-number solutions does the equation have?
erma4kov [3.2K]
2 solutions. This is because the parabola will cross the x axis twice. We know this because -5 means the vertex will be 5 units below the x axis. and the parabola opens upwards because the first coefficient is positive. Hope this helped :)
5 0
3 years ago
What is the vertex of this parabola? y= 2x² + 4x +5
uranmaximum [27]

Answer:

vertex = (- 1, 3 )

Step-by-step explanation:

Given a parabola in standard form

y = ax² + bx + c ( a ≠ 0 )

Then the x- coordinate of the vertex is

x_{vertex} = - \frac{b}{2a}

y = 2x² + 4x + 5 ← is in standard form

with a = 2, b = 4, then

x_{vertex} = - \frac{4}{4} = - 1

Substitute x = - 1 into the equation for corresponding value of y, that is

y = 2(- 1)² + 4(- 1) + 5 = 2 - 4 + 5 = 3

vertex = (- 1, 3 )

6 0
3 years ago
Use decimals and fractions in the same equation showing the Commutative Property. Repeat for the Associative Property.
Anna71 [15]

For Commutative Property of Addition

Let us take a decimal number 2.14 and a fraction \frac{5}{20}

Now, according to the Commutative property of Addition:

For any two numbers a and b :

a+b = b+a

So, for 2.14 and \frac{5}{20}

Let us add

2.14+\frac{5}{20}  = \frac{214}{100}  +\frac{5}{20}

                                   =\frac{214}{100}  + \frac{5 \times 5}{20 \times 5} \\ \\=\frac{214}{100}  + \frac{25}{100} \\ \\= 2.14 + 0.25 \\ \\ = 2.39

Also,

\frac{5}{20} + 2.14  = \frac{5}{20} + \frac{214}{100}

                                     = \frac{5 \times 5}{20 \times 5} +\frac{214}{100} \\ \\= \frac{25}{100}  + \frac{214}{100} \\ \\=  0.25 + 2.14 \\ \\ = 2.39

Therefore, 2.14+\frac{5}{20} = \frac{5}{20} + 2.14

Hence,  Commutative Property of Addition is satisfied.


For Associated Property of Addition

Let us take two same decimal numbers 2.14 , 7.25 and a fraction \frac{5}{20}

Now, according to the Associated property of Addition:

For any three numbers a, b  and  c

a + (b+c) =(a+b) + c

So, for 2.14 , 7.25 and \frac{5}{20}

The Left hand side:

a + (b+c)

2.14 + (7.25 + \frac{5}{20}) = 2.14 + (\frac{725}{100} + \frac{5 \times 5}{20\times 5})

                                                         = 2.14 + (\frac{725}{100} + \frac{25 }{100})

                                                         = 2.14 + (\frac{750}{100} )

                                                        = \frac{214}{100} + \frac{750}{100}

                                                         = \frac{964}{100}

                                                        =9.64


The Right hand side:

(a + b )+c

(2.14 + 7.25 )+ \frac{5}{20}= ( 9.39 ) + \frac{5 }{20}

                                                = 9.39  + \frac{5 \times 5 }{20 \times 5}

                                                = 9.39  + \frac{25}{100}

                                                = 9.39  + 0.25

                                                = 9.64


Thus,

(2.14 + (7.25 + \frac{5}{20} )= (2.14 + 7.25 )+ \frac{5}{20}

Therefore, 2.14+\frac{5}{20} = \frac{5}{20} + 2.14

Hence,  Associative Property of Addition is satisfied.




8 0
3 years ago
What is the midpoint between -2-3i and 3+9i
Svetlanka [38]

Answer:

1/2 + 3i is the midpoint between -2-3i and 3+9i.

Step-by-step explanation:

Given the complex number

  • -2-3i
  • 3+9i

The formula to find the midpoint of two complex number (a + bi) and (c + di) is:

M=\frac{\left(a+c\right)}{2}+\frac{\left(b+d\right)i}{2}

M=\frac{\left(-2+3\right)}{2}+\frac{\left(-3+\left(9\right)\right)i}{2}

M=\frac{-2+3+\left(-3+9\right)i}{2}

M=\frac{1+6i}{2}

M=\frac{1}{2}+3i

Therefore, 1/2 + 3i is the midpoint between -2-3i and 3+9i.

3 0
3 years ago
Other questions:
  • Will give 16 points! Please help!
    8·1 answer
  • What is the answer to 7×3
    12·2 answers
  • N divided by 100 = 7.6
    10·1 answer
  • 13mm = 1.5inch how many inches is 7mm
    7·2 answers
  • What is the answer to 7?
    8·2 answers
  • (no links please) For each inequality, decide whether the solution is represented by
    9·1 answer
  • PLEASE HELP I KNOW ITS EASY BUT I FORGOT!!!! PLEASE HELP!! Write -3/8 as a decimal.
    7·2 answers
  • Solve for x<br>x/6 + ≥ −2​
    7·1 answer
  • Can you teach me fractions in math​
    15·2 answers
  • Which of the following numbers is not a perfect square?<br> A 44<br> B 121<br> C 400<br> D 625
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!