Answer:
it is in standard form
Step-by-step explanation:
your thinking of y intercept not standard
Answer: No, we don't have a right triangle
==========================================================
Explanation:
If a triangle with sides a,b,c makes the equation a^2+b^2 = c^2 true, where c is the longest side, then this triangle is a right triangle. This is the converse of the pythagorean theorem.
Here we have a = 2, b = 5 and c = 7.
So...
a^2+b^2 = c^2
2^2+5^2 = 7^2
4+25 = 49
29 = 49
The last equation is false, so the first equation is false for those a,b,c values. Therefore, we do <u>not</u> have a right triangle.
------------
In contrast, consider the classic 3-4-5 right triangle
a = 3, b = 4 and c = 5 would make a^2+b^2 = c^2 true because 3^2+4^2 = 5^2 is a true equation (both sides lead to 25).
Answer:
Step-by-step explanation:
3x - 2y = 18
x -int
3x - 2(0) = 18
3x = 18
x = 6
(6,0)
3(0) - 2y = 18
-2y = 18
y = -9
(0, -9)
Answer:
Student B is correct
Student A failed to distribute -4 and -6 when opening the brackets in the first step
Step-by-step explanation:
The solution Student A gave was:
2x - 4(3x + 6) = -6(2x + 1) - 4
2x - 12x + 6 = -12x + 1 - 4
-10x + 6 = -12x - 3
2x = -9
x = -4 _1 2 ( -4 1/2)
The solution Student B gave was:
2x - 4(3x + 6) = -6(2x + 1) - 4
2x - 12x - 24 = -12x - 6 - 4
-10x - 24 = -12x - 10
2x = 14
x = 7
Student B is correct.
Explanation of the error:
Student A failed to distribute -4 and -6 when opening the brackets in the first step.
That is,
2x - 4(3x + 6) = -6(2x + 1) - 4
To open this bracket, we will distribute, -4 and -6 so that we get
2x (-4 × 3x) + (-4 × +6) = (-6×2x) + (-6 × +1) - 4
Then we will get
2x -12x -24 = -12x -6 -4
Adding the like terms
-10x - 24 = -12x - 10
Collecting like terms
-10x + 12x = -10 + 24
∴ 2x = 14
x = 14 / 2
Hence,
x = 7