9.14% is the number rounded to the nearest hundredth
Answer:
the minimum production level is costing $800 (0.8×$1000) per hour for 2000 (2×1000) items produced per hour.
Step-by-step explanation:
if there is no mistake in the problem description, I read the following function :
C(x) = y = 0.3x² - 1.2x + 2
I don't know if you learned this already, but to find the extreme values of a function you need to build the first derivative of the function y' and find its solutions for y'=0.
the first derivative of C(x) is
0.6x - 1.2 = y'
0.6x - 1.2 = 0
0.6x = 1.2
x = 2
C(2) = 0.3×2² - 1.2×2 + 2 = 0.3×4 - 2.4 + 2 = 1.2-2.4+2 = 0.8
so, the minimum production level is costing $800 (0.8×$1000) per hour for 2000 (2×1000) items produced per hour.
Number 14 is this < (20:30)
The statement that correctly calculates the average price of Will's books is
B. ($32 + $45 + $39) ÷ 3
This is because the average or mean, is found by adding all of the numbers together and then dividing the sum by the amount of numbers you added together (in this case 3.)
Answer:
- -3/13 ≈ -1/4
- -6/11 ≈ -1/2
- -7/9 ≈ -3/4
Step-by-step explanation:
We'll drop all the minus signs, since they don't contribute anything but distraction.
When numerators or denominators are relatively large, changing their value by 1 unit will have a relatively small effect on the value of the fraction. For example, ...
3/13 ≈ 3/12 = 1/4
If we compare the decimal values of these fractions, we see that ...
3/13 ≈ 0.230769... (6-digit repeating decimal)
The closest of the offered "reasonable estimate" fractions is 1/4 = 0.25.
__
Likewise, 6/11 ≈ 6/12 = 1/2. In decimal, these fractions are ...
6/11 = 0.54... (2-digit repeat)
1/2 = 0.5
__
We can also increase or decrease both numerator and denominator by the same amount to get a fraction with nearly the same value. This works best when the numbers are larger.
7/9 ≈ 6/8 = 3/4 . . . . . . both numerator and denominator decreased by 1
In decimal, these are ...
7/9 = 0.7... (1-digit repeat)
3/4 = 0.75