Answer: Matter cannot be created or destroyed in chemical reactions.
Explanation: This is the law of conservation of mass. In every chemical reaction, the same mass of matter must end up in the products as started in the reactants. Balanced chemical equations show that mass is conserved in chemical reactions.
By looking it up on the periodic table
Answer:
C.
will precipitate out first
the percentage of
remaining = 12.86%
Explanation:
Given that:
A solution contains:
![[Ca^{2+}] = 0.0440 \ M](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%20%3D%200.0440%20%5C%20M)
![[Ag^+] = 0.0940 \ M](https://tex.z-dn.net/?f=%5BAg%5E%2B%5D%20%3D%200.0940%20%5C%20M)
From the list of options , Let find the dissociation of 

where;
Solubility product constant Ksp of
is 
Thus;
![Ksp = [Ag^+]^3[PO_4^{3-}]](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BAg%5E%2B%5D%5E3%5BPO_4%5E%7B3-%7D%5D)
replacing the known values in order to determine the unknown ; we have :
![8.89 \times 10 ^{-17} = (0.0940)^3[PO_4^{3-}]](https://tex.z-dn.net/?f=8.89%20%5Ctimes%2010%20%5E%7B-17%7D%20%20%3D%20%280.0940%29%5E3%5BPO_4%5E%7B3-%7D%5D)
![\dfrac{8.89 \times 10 ^{-17}}{(0.0940)^3} = [PO_4^{3-}]](https://tex.z-dn.net/?f=%5Cdfrac%7B8.89%20%5Ctimes%2010%20%5E%7B-17%7D%7D%7B%280.0940%29%5E3%7D%20%20%3D%20%5BPO_4%5E%7B3-%7D%5D)
![[PO_4^{3-}] =\dfrac{8.89 \times 10 ^{-17}}{(0.0940)^3}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D%5Cdfrac%7B8.89%20%5Ctimes%2010%20%5E%7B-17%7D%7D%7B%280.0940%29%5E3%7D)
![[PO_4^{3-}] =1.07 \times 10^{-13}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D1.07%20%5Ctimes%2010%5E%7B-13%7D)
The dissociation of 
The solubility product constant of
is 
The dissociation of
is :

Thus;
![Ksp = [Ca^{2+}]^3 [PO_4^{3-}]^2](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E3%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![2.07 \times 10^{-33} = (0.0440)^3 [PO_4^{3-}]^2](https://tex.z-dn.net/?f=2.07%20%5Ctimes%2010%5E%7B-33%7D%20%3D%20%280.0440%29%5E3%20%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![\dfrac{2.07 \times 10^{-33} }{(0.0440)^3}= [PO_4^{3-}]^2](https://tex.z-dn.net/?f=%5Cdfrac%7B2.07%20%5Ctimes%2010%5E%7B-33%7D%20%7D%7B%280.0440%29%5E3%7D%3D%20%20%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![[PO_4^{3-}]^2 = \dfrac{2.07 \times 10^{-33} }{(0.0440)^3}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%5E2%20%3D%20%5Cdfrac%7B2.07%20%5Ctimes%2010%5E%7B-33%7D%20%7D%7B%280.0440%29%5E3%7D)
![[PO_4^{3-}]^2 = 2.43 \times 10^{-29}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%5E2%20%3D%202.43%20%5Ctimes%2010%5E%7B-29%7D)
![[PO_4^{3-}] = \sqrt{2.43 \times 10^{-29}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D%20%5Csqrt%7B2.43%20%5Ctimes%2010%5E%7B-29%7D)
![[PO_4^{3-}] =4.93 \times 10^{-15}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D4.93%20%5Ctimes%2010%5E%7B-15%7D)
Thus; the phosphate anion needed for precipitation is smaller i.e
in
than in

Therefore:
will precipitate out first
To determine the concentration of
when the second cation starts to precipitate ; we have :
![Ksp = [Ca^{2+}]^3 [PO_4^{3-}]^2](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E3%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![2.07 \times 10^{-33} = [Ca^{2+}]^3 (1.07 \times 10^{-13})^2](https://tex.z-dn.net/?f=2.07%20%5Ctimes%2010%5E%7B-33%7D%20%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E3%20%281.07%20%5Ctimes%2010%5E%7B-13%7D%29%5E2)
![[Ca^{2+}]^3 = \dfrac{2.07 \times 10^{-33} }{(1.07 \times 10^{-13})^2}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%5E3%20%3D%20%20%5Cdfrac%7B2.07%20%5Ctimes%2010%5E%7B-33%7D%20%7D%7B%281.07%20%5Ctimes%2010%5E%7B-13%7D%29%5E2%7D)
![[Ca^{2+}]^3 =1.808 \times 10^{-7}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%5E3%20%3D1.808%20%5Ctimes%2010%5E%7B-7%7D)
![[Ca^{2+}] =\sqrt[3]{1.808 \times 10^{-7}}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%20%3D%5Csqrt%5B3%5D%7B1.808%20%5Ctimes%2010%5E%7B-7%7D%7D)
![[Ca^{2+}] =0.00566](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%20%3D0.00566)
This implies that when the second cation starts to precipitate ; the concentration of
in the solution is 0.00566
Therefore;
the percentage of
remaining = concentration remaining/initial concentration × 100%
the percentage of
remaining = 0.00566/0.0440 × 100%
the percentage of
remaining = 0.1286 × 100%
the percentage of
remaining = 12.86%
Answer:
In a fossil fuel power plant the chemical energy stored in fossil fuels such as coal, fuel oil, natural gas or oil shale and oxygen of the air is converted successively into thermal energy, mechanical energy and, finally, electrical energy.
The answer is 19 ahhahaha