Answer is: 13181,7 kJ of energy <span>is released when 10.5 moles of acetylene is burned.
</span>Balanced chemical reaction: C₂H₂ + 5/2O₂ → 2CO₂ + H₂O.
<span>ΔHrxn = sum of
ΔHf (products of reaction) - sum of ΔHf (reactants).</span><span>
Or ΔHrxn = ∑ΔHf (products of reaction)
- ∑ΔHf (reactants).
ΔHrxn - enthalpy change of chemical reaction.
<span>ΔHf - enthalpy of formation of reactants or
products.
</span></span>ΔHrxn = (2·(-393,5) + (-241,8)) - 226,6 · kJ/mol.
ΔHrxn = -1255,4 kJ/mol.
Make proportion: 1 mol (C₂H₂) : -1255,4 kJ = 10,5 mol(C₂H₂) : Q.
Q = 13181,7 kJ.
Answer:
Explanation:
Mole = no. Molecules/6.02×10^23
Mole = (1.40×10^24)/(6.02×10^23)
Mole = 2.33mole
Answer:
C. Lose three electrons to have a full outer shell
Explanation:
Al is in Group 13 of the Periodic Table, so it has three valence electrons.
It must either lose three electrons or gain five to achieve a stable octet.
It is easier to lose three electrons than it is to gain five, so Al loses three electrons.
D. is wrong, for the same reason.
A. is wrong. If Al lost three electrons, it would be breaking into a stable inner shell.
C. is wrong. Al is a metal, so it will lose electrons in a reaction.
Answer:
V₂ = 15.3
Explanation:
Given data:
Initial volume = 12.0 L
Initial temperature = 20°C
Final temperature =100°C
Final volume = ?
Solution:
First of all we will convert the temperature into kelvin.
20°C + 273 = 293 K
100°C + 273 = 373 K
Formula:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 12.0 L × 373 K / 293 k
V₂ = 4476 L.K /293 k
V₂ = 15.3
V₂ = 1566 L.K / 298 K
V₂ = 5.3 L
Answer:
11.3 g.
Explanation:
Hello there!
In this case, since the combustion of butane is:

Thus, since there is a 1:5 mole ratio between butane and water, we obtain the following mass of water:

Therefore, the resulting mass of water is:

Best regards!