Lets write this out:-
2.4 + 0.8 = ________ + 1.21 = ______ + 1.78 = ______ - 5.14 = _____
So to solve d blanks we will do d following:-
2.4 + 0.8 = 3.2
Now lets write this out AGAIN.
2.4 + 0.8 = 3.2 + 1.21 = ______ + 1.78 = ______ - 5.14 = ____
Now lets solve again:-
3.2 + 1.21 = 4.41
Now lets write this out AGAIN.
2.4 + 0.8 = 3.2 + 1.21 = 4.41 + 1.78 = ______ - 5.14 = ____
Now lets solve again:-
4.41 + 1.78 = 6.19
Now lets write this out AGAIN.
2.4 + 0.8 = 3.2 + 1.21 = 4.41 + 1.78 = 6.19 - 5.14 = ____
Now lets solve again:-
6.19 - 5.14 = 1.05
Now lets write this out AGAIN.
2.4 + 0.8 = 3.2 + 1.21 = 4.41 + 1.78 = 6.19 - 5.14 = 1.05
So, 2.4 + 0.8 = 3.2 + 1.21 = 4.41 + 1.78 = 6.19 - 5.14 = 1.05
Hope I helped ya!! xD
Answer:
1, 3, 5
Step-by-step explanation:
They're odd, consecutive, and equal 9.
Answer:


Step-by-step explanation:
A vector quantity is represented by 
where y = y-coordinate and x = x-coordinate
Since vector AB represents a vector in 3rd quadrant,
It starts from point A and ends at B,
Therefore, coordinates of B are (-9, -4)
= 
Similarly vector CD starts with C and ends at D in the 2nd quadrant,
Therefore coordinates of D will be (-5, 4)

Answer:
a. 144 cubic foot
b. 12 ft
c. 18 ft
Step-by-step explanation:
Let the volume of prism A be V_a
and that of prism b be V_b
ATQ, V_a + V_b= 432
also V_a= 0.5 V_b
⇒1.5 V_b= 432
= V_b= 432/1.5= 288 cubic feet
therefore V_a= 144 cubic feet
volume of prism= area of base×height = V_a
24×h = 144
⇒h= 12 ft
A_b= 2/3×24
⇒base area of prism B= 16 sq.ft
now 16×h_b= 288⇒h_b= 288/16= 18 ft
Answer: verdadero.
Step-by-step explanation:
En geometría se dice que dos figuras son semejantes si tienen la misma forma pero no necesariamente el mismo tamaño.
Ahora, lo que define la forma de un triángulo son sus ángulos, entonces si dos triángulos tienen los mismos ángulos, estos triángulos van a tener la misma forma.
Y los lados siendo proporcionales entre ellos (recordar que una relación proporcional es y = k*x) habla de la relación entre los tamaños de los dos triángulos.
Entonces si, "dos triángulos son semejantes, si sus ángulos son iguales y sus lados proporcionales" es verdadero.