Answer:
The mass of the sand that will fall on the disk to decrease the is 0.3375 kg
Explanation:
Moment before = Moment after

where;
I is moment of inertia = Mr² = 0.3 x (0.3)² = 0.027 kg.m²
substitute this in the above equation;
![m = \frac{ 0.027[3(2 \pi) - 2(2 \pi)]} {0.2^2 * 6\pi } = \frac{ 0.027[6 \pi - 4\pi]} {0.2^2 * 4\pi }\\\\m = 0.3375kg](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B%200.027%5B3%282%20%5Cpi%29%20%20-%202%282%20%5Cpi%29%5D%7D%20%7B0.2%5E2%20%2A%206%5Cpi%20%7D%20%3D%20%5Cfrac%7B%200.027%5B6%20%5Cpi%20%20-%204%5Cpi%5D%7D%20%7B0.2%5E2%20%2A%204%5Cpi%20%7D%5C%5C%5C%5Cm%20%3D%200.3375kg)
Therefore, the mass of the sand that will fall on the disk to decrease the is 0.3375 kg
Answer:
c. initial (x and y)
Explanation:
When a projectile is launched at a velocity with a launch angle, to solve it, we must first resolve the initial velocity into the x and y components. To do this will mean we have to treat it like a triangle due to the launch angle and the direction of the projectile.
Therefore, we will have to make use of trigonometric ratios which is also known by the mnemonic "SOH CAH TOA"
Thus, this method resolves the initial x and y velocities.
The unconscious mind plays a large role in Sigmund Freud's psychoanalysis<span>. He discussed the importance of the unconscious mind in understanding conscious thought and behaviour. </span><span>Sigmund Freud
</span>
For an inelastic collision where coefficient of restitution,e, is equal to 0, the momentum is conserved but not the kinetic energy. So, there is addition or elimination of kinetic energy.
On the otherhand, when e = 1, like for an elastic collision, kinetic energy and momentum is conserved. Thus, the system's kinetic energy is unchanged.
Answer:
F = 75[J]
Explanation:
We know that work is defined as the product of force by distance.
In this way we have two forces, the weight of the block down, and the force that bring about the block to rise.

where:
W = work = 50 [J]
d = distance = 2 [m]
Fweight = 50 [N]
Fupward [N]
Now replacing:
![50=-(50*2)+(F_{upward}*2)\\50+100=F_{upward}*2\\F_{upward}=150/2\\F_{upward}=75[J]](https://tex.z-dn.net/?f=50%3D-%2850%2A2%29%2B%28F_%7Bupward%7D%2A2%29%5C%5C50%2B100%3DF_%7Bupward%7D%2A2%5C%5CF_%7Bupward%7D%3D150%2F2%5C%5CF_%7Bupward%7D%3D75%5BJ%5D)