Can you please translate to English?
To determine the force that acts on the mass, just multiply the mass by the gravitational field. Using the given data,
F = (2.50 kg)(14 N/kg) = 35 N
Therefore, the force that acts on the mass is equal to 35 N.
Answer:
Explanation:
ignore air resistance
Let t be the time of fall for the dropped stone.
½(9.8)t² = 43.12(t - 2.2) + ½(9.8)(t - 2.2)²
4.9t² = 43.12t - 94.864 + 4.9(t² - 4.4t + 4.84)
4.9t² = 43.12t - 94.864 + 4.9t² - 21.56t + 23.716
0 = 21.56t - 71.148
t = 71.148/21.56 = 3.3 s
h = ½(9.8)3.3² = 53.361 = 53 m
or
h = 43.12(3.3 - 2.2) + ½(9.8)(3.3 - 2.2)² = 53.361 = 53 m
Answer:
m³/(kg⋅s²)
Explanation:
Hello.
In this case, since the involved formula is:

By writing a dimensional analysis with the proper algebra handling, we obtain:
![N[=]G*\frac{kg*kg}{m^2}\\ \\kg*\frac{m}{s^2}[=]G *\frac{kg*kg}{m^2}\\\\G[=]\frac{kg*m*m^2}{kg^2*s^2}\\ \\G[=]\frac{m^3}{kg*s^2}](https://tex.z-dn.net/?f=N%5B%3D%5DG%2A%5Cfrac%7Bkg%2Akg%7D%7Bm%5E2%7D%5C%5C%20%5C%5Ckg%2A%5Cfrac%7Bm%7D%7Bs%5E2%7D%5B%3D%5DG%20%2A%5Cfrac%7Bkg%2Akg%7D%7Bm%5E2%7D%5C%5C%5C%5CG%5B%3D%5D%5Cfrac%7Bkg%2Am%2Am%5E2%7D%7Bkg%5E2%2As%5E2%7D%5C%5C%20%5C%5CG%5B%3D%5D%5Cfrac%7Bm%5E3%7D%7Bkg%2As%5E2%7D)
Thus, answer is:
m³/(kg⋅s²)
Note that the [=] is used to indicate the units of G.
Best regards
Answer:
v = 88.89 [m/s]
Explanation:
To solve this problem we must use the principle of conservation of momentum which tells us that the initial momentum of a body plus the momentum added to that body will be equal to the final momentum of the body.
We must make up the following equation:

where:
F = force applied = 4000 [N]
t = time = 0.001 [s]
m = mass = 0.045 [kg]
v = velocity [m/s]
![4000*0.001=0.045*v\\v=88.89[m/s]](https://tex.z-dn.net/?f=4000%2A0.001%3D0.045%2Av%5C%5Cv%3D88.89%5Bm%2Fs%5D)