Answer:
x - intercept = 8
y - intercept = 4
Step-by-step explanation:
In order to to find x- intercept, plug y = 0, in the given equation of line.
In order to to find y- intercept, plug x = 0, in the given equation of line.
A critical value is the point on the scale of the
test statistic (z test in this case) outside which we reject the null
hypothesis, and is taken from the level of significance of the test. The critical
values can be obtained from the standard distribution tables for z and for this
case, it is equivalent to:
critical value zα/2 at 98% confidence level = 2.326
Answer: 2.326
<span> </span>
Answer:
(-10,8)
Step-by-step explanation:
So our original point is (-6,9).
A translation of 4 units to the left means that the x-value would go left by 4. In other words, we subtract 4 to -6. We subtract because going to the left means that it's going to the negative direction.
A translation of down 1 unit means that the y-value would go down by 1. In other words, we subtract 1. Again, we subtract because going downwards means that it's going to the negative direction.
Therefore, the new point would be:
Answer:
The second time when Luiza reaches a height of 1.2 m = 2 08 s
Step-by-step explanation:
Complete Question
Luiza is jumping on a trampoline. Ht models her distance above the ground (in m) t seconds after she starts jumping. Here, the angle is entered in radians.
H(t) = -0.6 cos (2pi/2.5)t + 1.5.
What is the second time when Luiza reaches a height of 1.2 m? Round your final answer to the nearest hundredth of a second.
Solution
Luiza is jumping on trampolines and her height above the levelled ground at any time, t, is given as
H(t) = -0.6cos(2π/2.5)t + 1.5
What is t when H = 1.2 m
1.2 = -0.6cos(2π/2.5)t + 1.5
0.6cos(2π/2.5)t = 1.2 - 1.5 = -0.3
Cos (2π/2.5)t = (0.3/0.6) = 0.5
Note that in radians,
Cos (π/3) = 0.5
This is the first time, the second time that cos θ = 0.5 is in the fourth quadrant,
Cos (5π/3) = 0.5
So,
Cos (2π/2.5)t = Cos (5π/3)
(2π/2.5)t = (5π/3)
(2/2.5) × t = (5/3)
t = (5/3) × (2.5/2) = 2.0833333 = 2.08 s to the neareast hundredth of a second.
Hope this Helps!!!