Answer:
Width = 16 m
Length = 4 m
Step-by-step explanation:
The area of rectangular is 64m² the length of the pool is 12 m less that the width . The situation can be represented by the equation x
Area of a rectangle = Length × Width
L = W - 12
Hence:
64 = (W - 12) × W
64 = W² - 12W
W² - 12W - 64 = 0
Factor using
(W + 4)(W - 16) = 0
Width = 16m
Length = W - 12
Length = 16 m - 12 m
= 4 m
For an amount of sales of $5,000, the two salary choice will be equal
Let the amount of sales be $x
The 3% she will receive will be;

We add this to the base salary and equate to the former monthy salary
We have this as;
Answer:
y = 2x - 5
Step-by-step explanation:
Answer: 12√6
Step-by-step explanation:
Given the expression;
2√3 * 3√√8
= (2*3) * (√3*√8)
= 6 * (√24)
= 6 * √4*6
= 6 * (2√6)
= (6*2)√6
= 12√6
Therefore, the simplified form of the expression is 12√6.
Answer:
For 3x^2+4x+4=0
Discriminant= = -32
The solutions are
(-b+√x)/2a= (-2+2√-2)/3
(-b-√x)/2a= (-2-2√-2)/3
For 3x^2+2x+4=0
Discriminant= -44
The solutions
(-b+√x)/2a= (-1+√-11)/3
(-b-√x)/2a= (-1-√-11)/3
For 9x^2-6x+2=0
Discriminant= -36
The solutions
(-b+√x)/2a= (1+√-1)/3
(-b-√x)/2a= (1-√-1)/3
Step-by-step explanation:
Formula for the discriminant = b²-4ac
let the discriminant be = x for the equations
The solution of the equations
= (-b+√x)/2a and = (-b-√x)/2a
For 3x^2+4x+4=0
Discriminant= 4²-4(3)(4)
Discriminant= 16-48
Discriminant= = -32
The solutions
(-b+√x)/2a =( -4+√-32)/6
(-b+√x)/2a= (-4 +4√-2)/6
(-b+√x)/2a= (-2+2√-2)/3
(-b-√x)/2a =( -4-√-32)/6
(-b-√x)/2a= (-4 -4√-2)/6
(-b-√x)/2a= (-2-2√-2)/3
For 3x^2+2x+4=0
Discriminant= 2²-4(3)(4)
Discriminant= 4-48
Discriminant= -44
The solutions
(-b+√x)/2a =( -2+√-44)/6
(-b+√x)/2a= (-2 +2√-11)/6
(-b+√x)/2a= (-1+√-11)/3
(-b-√x)/2a =( -2-√-44)/6
(-b-√x)/2a= (-2 -2√-11)/6
(-b-√x)/2a= (-1-√-11)/3
For 9x^2-6x+2=0
Discriminant= (-6)²-4(9)(2)
Discriminant= 36 -72
Discriminant= -36
The solutions
(-b+√x)/2a =( 6+√-36)/18
(-b+√x)/2a= (6 +6√-1)/18
(-b+√x)/2a= (1+√-1)/3
(-b-√x)/2a =( 6-√-36)/18
(-b-√x)/2a= (6 -6√-1)/18
(-b-√x)/2a= (1-√-1)/3