Answer:
Decimal 0.333 to a fraction in simplest form is: 
Step-by-step explanation:
Given the decimal

Multiply and divide by 10 for every number after the decimal point.
There are three digits to the right of the decimal point, therefore multiply and divide by 1000.
Thus,

∵ 0.333×1000 = 333
Let us check if we can reduce the fraction 
For this, we need to find a common factor of 333 and 1000 in order to cancel it out.
But, first, we need to find the Greatest Common Divisor (GCD) of 333, 1000
<u>Greatest Common Divisor (GCD) : </u>
The GCD of a, b is the largest positive number that divides both a and b without a remainder.
Prime Factorization of 333: 3 · 3 · 37
Prime Factorization of 1000: 2 · 2 · 2 · 5 · 5 · 5
As there is no common factor for 333 and 1000, therefore, the GCD is 1.
Important Tip:
- As GCD is 1, therefore the fraction can not be simplified.
Therefore, decimal 0.333 to a fraction in simplest form is: 
You need 48 packages for each employee to have 3 uniforms
I know it's either A B C or D.
Answer:
The answer is D)-2x-11y-13
Step-by-step explanation:
Answer:
The system is consistent because the rightmost column of the augmented matrix is not a pivot column.
Step-by-step explanation:
It is given that the coefficient of the matrix of a linear equation has a pivot position in every row.
It is provided by the Existence and Uniqueness theorem that linear system is said to be consistent when only the column in the rightmost of the matrix which is augmented is not a pivot column.
When the linear system is considered consistent, then every solution set consists of either unique solution where there will be no any variables which are free or infinitely many solutions, when there is at least one free variable. This explains why the system is consistent.
For any m x n augmented matrix of any system, if its co-efficient matrix has a pivot position in every row, then there will never be a row of the form [0 .... 0 b].