Answer:
a) Δφ = 1.51 rad
, b) x = 21.17 m
Explanation:
This is an interference problem, as they indicate that the distance AP is on the x-axis the antennas must be on the y-axis, the phase difference is
Δr /λ = Δfi / 2π
Δfi = Δr /λ 2π
Δr = r₂-r₁
let's look the distances
r₁ = 57.0 m
We use Pythagoras' theorem for the other distance
r₂ = √ (x² + y²)
r₂ = √(57² + 9.3²)
r₂ = 57.75 m
The difference is
Δr = 57.75 - 57.0
Δr = 0.75 m
Let's look for the wavelength
c = λ f
λ = c / f
λ = 3 10⁸ / 96.0 10⁶
λ = 3.12 m
Let's calculate
Δφ = 0.75 / 3.12 2π
Δφ = 1.51 rad
b) for destructive interference the path difference must be λ/2, the equation for destructive interference with φ = π remains
Δr = (2n + 1) λ / 2
For the first interference n = 0
Δr = λ / 2
Δr = r₂ - r₁
We substitute the values
√ (x² + y²) - x = 3.12 / 2
Let's solve for distance x
√ (x² + y²) = 1.56 + x
x² + y² = (1.56 + x)²
x² + y² = 1.56² + 2 1.56 x + x²
y2 = 20.4336 +3.12 x
x = (y² -20.4336) /3.12
x = (9.3² -20.4336) /3.12
x = 21.17 m
This is the distance for the first minimum
Answer:
This is because The object's acceleration due to gravity is less on the moon.
Explanation:
The temperature rises during boiling.
Hello.
The answer is: D. weak nuclear force.
The weak force causes beta decay, a form of radioactivity. It could not be explained by the strong nuclear force, the force that’s responsible for holding the atomic nucleus together, because this force doesn’t affect electrons.
It couldn’t be the electromagnetic force, because this does not affect neutrons, and the force of gravity is far too weak to be responsible.
Have a nice day
That equation is Newton's universal law of gravitation. ... Any two masses exert equal-and-opposite gravitational forces on each other. If we drop a ball, the Earth exerts a gravitational force on the ball, but the ball exerts a gravitational force of the same magnitude (and in the opposite direction) on the Earth.