Answer:
150000000000 m
0.0000005 seconds
33.33 ns
Explanation:
Speed of electromagnetic waves through vacuum = 
Echo time = 1000 seconds
Echo time is the time taken to reach the object and come back to the observer
Distance = Speed×Time

Venus is 150000000000 m away from Earth
Time = Distance / Speed

Echo time will be twice the time

The echo time will be 0.0000005 seconds
Difference in time = Difference in distance / Speed

The accuracy by which I will be able to measure the echo time is 33.33 ns
C. 5
a neutral atom has no electrical charge. protons are positive and electrons are negative, they need to be the same to make it a neutral atom.
IT IS EASIER TO CLIMB A SLANTED SLOPE
Answer:
it increases the amplitude of the wave as it propagates.
Explanation:
Answer:
Q = 282,000 J
Explanation:
Given that,
The mass of liquid water, m = 125 g
Temperature, T = 100°C
The latent heat of vaporization, Hv = 2258 J/g.
We need to find the amount of heat needed to vaporize 125 g of liquid water. We can find it as follows :

or
Q = 282,000 J
So, the required heat is 282,000 J
.