Answer:
Zero to the power of zero, denoted by 00, is a mathematical expression with no agreed-upon value. The most common possibilities are 1 or leaving the expression undefined, with justifications existing for each, depending on context
Explanation:
Answer:
410.196 J/[kg*°C].
Explanation:
1) the equation of the energy is: E=c*m*(t₂-t₁), where E - energy (523 J), c - unknown specific heat of copper, m - mass of this copper [kg], t₂ - the final temperature, t₁ - initial temerature;
2) the specific heat of copper is:
![c=\frac{E}{m*(t_2-t_1)}; \ => \ c=\frac{523}{0.085*(45-30)}=\frac{523}{1.275}=410.196[\frac{J}{kg*C}].](https://tex.z-dn.net/?f=c%3D%5Cfrac%7BE%7D%7Bm%2A%28t_2-t_1%29%7D%3B%20%5C%20%3D%3E%20%5C%20c%3D%5Cfrac%7B523%7D%7B0.085%2A%2845-30%29%7D%3D%5Cfrac%7B523%7D%7B1.275%7D%3D410.196%5B%5Cfrac%7BJ%7D%7Bkg%2AC%7D%5D.)
<span>After alcohol is metabolized in the liver, it is burned as fuel for the cells. </span>
Answer:
r = 3.61x
M/s
Explanation:
The rate of disappearance (r) is given by the multiplication of the concentrations of the reagents, each one raised of the coefficient of the reaction.
r = k.![[S2O2^{-8} ]^{x} x [I^{-} ]^{y}](https://tex.z-dn.net/?f=%5BS2O2%5E%7B-8%7D%20%5D%5E%7Bx%7D%20x%20%5BI%5E%7B-%7D%20%5D%5E%7By%7D)
K is the constant of the reaction, and doesn't depends on the concentrations. First, let's find the coefficients x and y. Let's use the first and the second experiments, and lets divide 1º by 2º :



x = 1
Now, to find the coefficient y let's do the same for the experiments 1 and 3:




y = 1
Now, we need to calculate the constant k in whatever experiment. Using the first :


k = 4.01x10^{-3} M^{-1}s^{-1}[/tex]
Using the data given,
r = 
r = 3.61x
M/s
4 protons the number of proton has the same number of electron [which is the same as atomic number]