1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ugo [173]
2 years ago
9

The figure is made up of a square and a rectangle. Find the area of the shaded region 16 by 3 by 7

Mathematics
1 answer:
FrozenT [24]2 years ago
4 0

Answer:

Go on Answers.com your welcome.

You might be interested in
17 in long 1.3 ft wide and 8in high what is the volume
OverLord2011 [107]

Answer:

135.2

Step-by-step explanation:

Volume is LWH and that is 17 * 1.3 * 8=135.2

5 0
3 years ago
Read 2 more answers
HELP WILL GIVE BRAINLIEST
Ganezh [65]

Answer:

2 boom

Step-by-step explanation:

2

4 0
2 years ago
Read 2 more answers
Define the double factorial of n, denoted n!!, as follows:n!!={1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n} if n is odd{2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n} if n is evenand (
tekilochka [14]

Answer:

Radius of convergence of power series is \lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}=\frac{1}{108}

Step-by-step explanation:

Given that:

n!! = 1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n        n is odd

n!! = 2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n       n is even

(-1)!! = 0!! = 1

We have to find the radius of convergence of power series:

\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\

Power series centered at x = a is:

\sum_{n=1}^{\infty}c_{n}(x-a)^{n}

\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\

a_{n}=[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}n!(3(n+1)+3)!(2(n+1))!!}{[(n+1+9)!]^{3}(4(n+1)+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]

Applying the ratio test:

\frac{a_{n}}{a_{n+1}}=\frac{[\frac{32^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]}{[\frac{32^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]}

\frac{a_{n}}{a_{n+1}}=\frac{(n+10)^{3}(4n+7)(4n+5)}{32(n+1)(3n+4)(3n+5)(3n+6)+(2n+2)}

Applying n → ∞

\lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}= \lim_{n \to \infty}\frac{(n+10)^{3}(4n+7)(4n+5)}{32(n+1)(3n+4)(3n+5)(3n+6)+(2n+2)}

The numerator as well denominator of \frac{a_{n}}{a_{n+1}} are polynomials of fifth degree with leading coefficients:

(1^{3})(4)(4)=16\\(32)(1)(3)(3)(3)(2)=1728\\ \lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}=\frac{16}{1728}=\frac{1}{108}

4 0
2 years ago
Find the value of x.
sp2606 [1]

x = 64°

Step-by-step Explanation

x = 1/2[(360° - 2*58°)-2*58°]

x = 1/2[(360° - 2*58°) - 2*58°]

x = 1/2[(360° - 116°) - 116°]

x = 1/2[244° - 116°]

x = 1/2[128°]

x = 64°

8 0
3 years ago
5.44nL to mL convert
aniked [119]
5.44nl \times \frac{1ml}{1000000nl} = 0.00000544ml
6 0
3 years ago
Other questions:
  • Using the quadratic formula to solve x2 = 5 – x, what are the values of x?
    12·2 answers
  • If 5 pizzas cost $70 how much will pizzas cost?
    10·2 answers
  • Which is not a correct way to name the angle? A. ∠P B. ∠1 C. ∠QRP D. ∠QPR
    9·1 answer
  • I will give u brainliest
    14·1 answer
  • What is the formula for lineal equetion​
    14·2 answers
  • Tell whether the triangle with the given side lengths is a right triangle.
    11·1 answer
  • Helppp please!!!!!!!!!!!!!
    9·2 answers
  • Write a linear equation to represent this
    8·1 answer
  • Help me please if it right I give brainliest I promise
    6·2 answers
  • Asap Help 100 points
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!