1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenKa [72]
3 years ago
14

Puzzles are packaged in groups of 3. If the store has 183 nature puzzles and 165 animal puzzles, how many packages of puzzles ar

e there?
Mathematics
1 answer:
Yuri [45]3 years ago
5 0

Answer: 116 packages

Step-by-step explanation:

From the question, we are informed that Puzzles are packaged in groups of 3 and that the store has 183 nature puzzles. The number of packages here will be:

= 183/3

= 61 packages

For the 165 animal puzzles, the number of packages will be:

= 165/3

= 55 packages

The total number of packages of puzzles will be:

= 61 + 55 packages

= 116 packages

You might be interested in
Dada la sucesión an = 1700 + 4,1· n2 + 304,9· n
shutvik [7]

Concluimos que la opción correcta es <em>"Solo II"</em>.

Una expresión es una sucesión aritmética si y solo si existe entre dos elementos <em>consecutivos</em> cualesquiera de la serie la misma diferencia. La sucesión aritmética es definida por una expresión de la forma:

a_{n} = a + b\cdot n, n\in \mathbb{N} (1)

Donde a,b son coeficientes de la sucesión.

Asimismo, una expresión es una sucesión geométrica si y solo si entre dos elementos <em>consecutivos</em> cualesquiera de la serie existe la misma razón. La sucesión geométrica es definida por una expresión de la forma:

a_{n} = a\cdot r^{b\cdot n}, n\in \mathbb{N} (2)

Donde a, b, r son coeficientes de la sucesión.

Por último, una expresión es una sucesión monótona creciente si dados dos elementos <em>consecutivos</em> de una serie, el elemento posterior es siempre mayor que el elemento anterior. Matemáticamente, debe satisfacerse la siguiente condición:

\frac{a_{n+1}}{a_{n}} > 1, n\in \mathbb{N} (3)

Esta claro por inspección directa que la sucesión dada no es aritmética ni geométrica y cabe comprobar si es monótona creciente. Valiéndonos de (3), realizamos las operaciones algebraicas pertinentes:

r = \frac{1700 + 4,1\cdot (n+1)^{2}+304,9\cdot (n+1)}{1700 + 4,1\cdot n^{2}+304,9\cdot n}

r = \frac{1700+4,1\cdot (n^{2}+2\cdot n +1) +304,9\cdot (n+1)}{1700 + 4.1\cdot n^{2}+304,9\cdot n}

r = \frac{1700+4,1\cdot n^{2}+304,9\cdot n+4,1\dot (2\cdot n +1) +304.9}{1700+4,1\cdot n^{2}+304,9\cdot n}

r = 1 + \frac{8,2\cdot n +309}{1700 + 4,1\cdot n^{2}+304,9\cdot n}

Como puede apreciarse, r > 1. Por tanto, la sucesión es monótona y creciente.

En consecuencia, concluimos que la opción correcta es <em>"Solo II"</em>.

Invitamos cordialmente a leer esta pregunta sobre sucesiones: brainly.com/question/21709418

4 0
3 years ago
Kerry invests $682 in a savings account that earns 5.4% compounded annually. Andy invests $682 in a savings account that earns 7
mylen [45]
1050.28 Kerry’s money (10years later)
1364.56 Kerry’s money(20years later)
1159.4 Andy’s money (10years later)
1636.8 Andy’s money(20 years later)
4 0
3 years ago
Find the derivative of following function.
Aleks04 [339]

Answer:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \tan^2 x + 5x \big) + \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( 2 \sec^2 x \tan x + 5 \big)}{ \big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)} + \frac{2 \cot x \csc^2 x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2 \big( \sin^2x + 6 \big)} - \frac{2 \cos x \sin x \big( \cos^2 x - 3\sqrt{x}  + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)^2}

General Formulas and Concepts:
<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (cu)' = cu'

Derivative Property [Addition/Subtraction]:
\displaystyle (u + v)' = u' + v'

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (uv)' = u'v + uv'

Derivative Rule [Quotient Rule]:
\displaystyle \bigg( \frac{u}{v} \bigg)' = \frac{vu' - uv'}{v^2}

Derivative Rule [Chain Rule]:
\displaystyle [u(v)]' = u'(v)v'

Step-by-step explanation:

*Note:

Since the answering box is <em>way</em> too small for this problem, there will be limited explanation.

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle y = \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \times \frac{\tan^2 x + 5x}{\csc^2 x + 3}

<u>Step 2: Differentiate</u>

We can differentiate this function with the use of the given <em>derivative rules and properties</em>.

Applying Product Rule:

\displaystyle y' = \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' \frac{\tan^2 x + 5x}{\csc^2 x + 3} + \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) '

Differentiating the first portion using Quotient Rule:

\displaystyle \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' = \frac{\big( \cos^2 x - 3\sqrt{x} + 6 \big)' \big( \sin^2 x + 6 \big) - \big( \sin^2 x + 6 \big)' \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2}

Apply Derivative Rules and Properties, namely the Chain Rule:

\displaystyle \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - \big( 2 \sin x \cos x \big) \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2}

Differentiating the second portion using Quotient Rule again:

\displaystyle \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) ' = \frac{\big( \tan^2 x + 5x \big)' \big( \csc^2 x + 3 \big) - \big( \csc^2 x + 3 \big)' \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Apply Derivative Rules and Properties, namely the Chain Rule again:
\displaystyle \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) ' = \frac{\big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) - \big( -2 \csc^2 x \cot x \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Substitute in derivatives:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - \big( 2 \sin x \cos x \big) \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2} \frac{\tan^2 x + 5x}{\csc^2 x + 3} + \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \frac{\big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) - \big( -2 \csc^2 x \cot x \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Simplify:

\displaystyle y' = \frac{\big( \tan^2 x + 5x \big) \bigg[ \big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - 2 \sin x \cos x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \bigg]}{\big( \sin^2 x + 6 \big)^2 \big( \csc^2 x + 3 \big)} + \frac{\big( \cos^2 x - 3\sqrt{x} +6 \big) \bigg[ \big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) + 2 \csc^2 x \cot x \big( \tan^2 x + 5x \big) \bigg] }{\big( \csc^2 x + 3 \big)^2 \big( \sin^2 x + 6 \big)}

We can rewrite the differential by factoring and common mathematical properties to obtain our final answer:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \tan^2 x + 5x \big) + \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( 2 \sec^2 x \tan x + 5 \big)}{ \big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)} + \frac{2 \cot x \csc^2 x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2 \big( \sin^2x + 6 \big)} - \frac{2 \cos x \sin x \big( \cos^2 x - 3\sqrt{x}  + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)^2}

∴ we have found our derivative.

---

Learn more about derivatives: brainly.com/question/26836290

Learn more about calculus: brainly.com/question/23558817

---

Topic: Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

8 0
2 years ago
Read 2 more answers
The sum of the measures of the angles of a triangle is 180. The sum of the measures of the second and third angles is four times
prohojiy [21]

Answer:

{36, 66, 78}

Step-by-step explanation:

Let the measures of the three angles be f, s and t, for first, second and third.  Then s + t = 4f, t = 12 + s, and f + s + t = 180.

Subbing 12 + s for t in the first equation, we get s + 12 + s = 4f.

Subbing the same in the third equation, we get f + s + 12 + s = 180

This results in two equations in two unknowns (f and s):

2s - 4f = -12

2s  + f  = 168.

Let's eliminate s by subtracting the first of these two equations from the second.  Doing so yields 5f = 180.  Then the first angle, f, or x, is 36.

Then, from 2s + f = 168, we get 2s + 36 = 168, or 2s = 132.  Thus, the second angle is s = y = 66.

The sum of the three angles must be 180.  Thus, 36 + 66 + t = 180, or

102 + t = 180, or t = z = 78.

The three angles are

{36, 66, 78}.

3 0
3 years ago
The first term of an arithmetic sequence is -2. The eighth term of the sequence is 26. What is the common difference of the arit
andreev551 [17]

Answer:

d = 4

Step-by-step explanation:

The n th term of an arithmetic sequence is

a_{n} = a₁ + (n - 1)d

where a₁ is the first term and d the common difference

Given a₁ = - 2 and a₈ = 26 , then

- 2 + 7d = 26 ( add 2 to both sides (

7d = 28 ( divide both sides by 7 )

d = 4

8 0
3 years ago
Read 2 more answers
Other questions:
  • Which expression is equivalent to (a^-3 b/a^-5 b3)^-3? Assume a=0, b=0.
    10·1 answer
  • Solve two-step equation
    10·2 answers
  • The vertex is where the line y=-2x+4 intersects with the axis of symmetry of x=7. How do you write a quadratic equation in verte
    11·1 answer
  • A building in a city has a rectangle base. The length of the base measures 70 feet less than three times the width. The perimete
    7·1 answer
  • Find f(–2) for the function f(x) = 3x2 – 2x + 7.
    6·2 answers
  • PLEASE ANSWER I WILL GIVE BRAINIEST!!!!!!!!!!!!!!!
    9·2 answers
  • Which answer choice should I choose? Im thinking C but thinking i am wrong
    12·1 answer
  • 7(3x -4) = 49 <br><br><br><br> can you help me
    9·1 answer
  • Hal earns $5 a week doing chores for his parents. He also earns $10 a week for each dog.d, he walks,
    8·2 answers
  • 4(4 - x) - 8(-2 + 4x)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!