C!!!!!!!!!!!!!!!!!!!!!!!!!
Answer:
a. H0:μ1≥μ2
Ha:μ1<μ2
b. t=-3.076
c. Rejection region=[tcalculated<−1.717]
Reject H0
Step-by-step explanation:
a)
As the score for group 1 is lower than group 2,
Null hypothesis: H0:μ1≥μ2
Alternative hypothesis: H1:μ1<μ2
b) t test statistic for equal variances
t=(xbar1-xbar2)-(μ1-μ2)/sqrt[{1/n1+1/n2}*{((n1-1)s1²+(n2-1)s2²)/n1+n2-2}
t=63.3-70.2/sqrt[{1/11+1/13}*{((11-1)3.7²+(13-1)6.6²)/11+13-2}
t=-6.9/sqrt[{0.091+0.077}{136.9+522.72/22}]
t=-3.076
c. α=0.05, df=22
t(0.05,22)=-1.717
The rejection region is t calculated<t critical value
t<-1.717
We can see that the calculated value of t-statistic falls in rejection region and so we reject the null hypothesis at 5% significance level.
First find the total payments
Total paid
200×30=6,000 (this is the future value)
Second use the formula of the future value of annuity ordinary to find the monthly payment.
The formula is
Fv=pmt [(1+r/k)^(n)-1)÷(r/k)]
We need to solve for pmt
PMT=Fv÷[(1+r/k)^(n)-1)÷(r/k)]
PMT monthly payment?
Fv future value 6000
R interest rate 0.09
K compounded monthly 12
N=kt=12×(30months/12months)=30
PMT=6000÷(((1+0.09÷12)^(30)
−1)÷(0.09÷12))
=179.09 (this is the monthly payment)
Now use the formula of the present value of annuity ordinary to find the amount of his loan.
The formula is
Pv=pmt [(1-(1+r/k)^(-n))÷(r/k)]
Pv present value or the amount of his loan?
PMT monthly payment 179.09
R interest rate 0.09
N 30
K compounded monthly 12
Pv=179.09×((1−(1+0.09÷12)^(
−30))÷(0.09÷12))
=4,795.15
The answer is 4795.15