Hello!
Sulfuric acid (H₂SO₄) is a strong diprotic acid. "Diprotic" means that the acid donates 2 protons when dissociating in water to form ions. This happens in a series of two steps which are described below. The first reaction is basically a complete reaction while the second one is an equilibrium:
H₂SO₄(aq) + H₂O(l) → HSO₄⁻(aq) + H₃O⁺(aq)
HSO₄⁻(aq) + H₂O(l) ⇄ SO₄⁻²(aq) + H₃O⁺(aq)
Have a nice day!
Answer:
Option A. It has stayed the same.
Explanation:
To answer the question given above, we assumed:
Initial volume (V₁) = V
Initial temperature (T₁) = T
Initial pressure (P₁) = P
From the question given above, the following data were:
Final volume (V₂) = 2V
Final temperature (T₂) = 2T
Final pressure (P₂) =?
The final pressure of the gas can be obtained as follow:
P₁V₁/T₁ = P₂V₂/T₂
PV/T = P₂ × 2V / 2T
Cross multiply
P₂ × 2V × T = PV × 2T
Divide both side by 2V × T
P₂ = PV × 2T / 2V × T
P₂ = P
Thus, the final pressure is the same as the initial pressure.
Option A gives the correct answer to the question.
Answer:
3.31 atm.
Explanation:
- Gay-Lussac's law states that for a given mass and constant volume of an ideal gas, the pressure exerted on the sides of its container is directly proportional to its absolute temperature.
∵ P α T.
<em>∴ P₁T₂ = P₂T₁.</em>
P₁ = 3.00 atm, T₁ = 20.0 °C + 273.15 = 293.15 K.
P₂ = ??? atm, T₂ = 50.0 °C + 273.15 = 323.15 K.
<em>∴ P₂ = (P₁T₂)/T₁</em> = (3.00 atm)( 323.15 K)/(293.15 K) = <em>3.307 atm ≅ 3.31 atm.</em>
Answer : The concentration of NO is, 
Solution : Given,
Concentration of
and
= 152 M
Equilibrium constant,
= 
The given equilibrium reaction is,

The expression of
will be,
![K_c=\frac{[NO]^2}{[N_2][O_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNO%5D%5E2%7D%7B%5BN_2%5D%5BO_2%5D%7D)
Now put all the given values in this expression, we get:
![2.0\times 10^{-9}=\frac{[NO]^2}{152\times 152}](https://tex.z-dn.net/?f=2.0%5Ctimes%2010%5E%7B-9%7D%3D%5Cfrac%7B%5BNO%5D%5E2%7D%7B152%5Ctimes%20152%7D)
![[NO]=6.8\times 10^{-3}M](https://tex.z-dn.net/?f=%5BNO%5D%3D6.8%5Ctimes%2010%5E%7B-3%7DM)
Therefore, the concentration of NO is, 