Answer:
2.2 x 10²² molecules.
Explanation:
- Firstly, we need to calculate the no. of moles in (6.0 g) sodium phosphate:
<em>no. of moles = mass/molar mass </em>= (6.0 g)/(163.94 g/mol) = <em>0.0366 mol.</em>
- <em>It is known that every mole of a molecule contains Avogadro's number (6.022 x 10²³) of molecules.</em>
<em />
<u><em>using cross multiplication:</em></u>
1.0 mole of sodium phosphate contains → 6.022 x 10²³ molecules.
0.0366 mole of sodium phosphate contains → ??? molecules.
<em>∴ The no. of molecules in 6.0 g of sodium phosphate</em> = (6.022 x 10²³ molecules)(0.0366 mole)/(1.0 mole) = <em>2.2 x 10²² molecules.</em>
C. Increases. Increasing temperature=Increasing Volume
Answer: i would say producer
Explanation:
Answer:
P(total pressure) = 504 mmHg = 504mm/760mm/atm = 0.663 atm
Explanation:
Apply Dalton's Law of Partial Pressures.
P(total) = ∑Partial Pressures = ∑(256mm + 198mm + 48mm) = 504 mmHg
P(total pressure) = 504 mmHg = 504mm/760mm/atm = 0.663 atm
86 atoms have more electrons than Germanium