Answer:
B. 1-Butene rightarrow (1) BH3: THF (2)H202, OH-
Explanation:
In the hydroboration of alkenes, an alkene is hydrated to form an alcohol with anti-Markovnikov orientation.
the reagent BH₃:THF is the way that borane is used in organic reactions. The BH₃ adds to the double bond of an alkene to form an alkyl borane. Peroxide hydrogen in basic medium oxidizes the alkyl borane to form an alcohol. Indeed, hydroboration-oxidation converts alkenes to alcohols by adding water through the double bond, with anti-Markovnikov orientation.
Answer:
See explanation below
Explanation:
In order to calculate this, we need to use the following expression to get the concentration of the base:
MaVa = MbVb (1)
We already know the volume of NaOH used which is 13.4473 mL. We do not have the concentration of KHP, but we can use the moles. We have the mass of KHP which is 0.5053 g and the molecular formula. Let's calculate the molecular mass of KHP:
Atomic weights of the elements to be used:
K = 39.0983 g/mol; H = 1.0078 g/mol; C = 12.0107 g/mol; O = 15.999 g/mol
MM KHP = (1.0078*5) + (39.0983) + (8*12.0107) + (4*15.999) = 204.2189 g/mol
Now, let's calculate the mole of KHP:
moles = 0.5053 / 204.2189 = 0.00247 moles
With the moles, we also know that:
n = M*V (2)
Replacing in (1):
n = MbVb
Now, solving for Mb:
Mb = n/Vb (3)
Finally, replacing the data:
Mb = 0.00247 / (13.4473/1000)
Mb = 0.184 M
This would be the concentration of NaOH
35g Mg x 1mol / 24g = 840 mol