Answer:

Explanation:
At
, the heat of vaporization of water is given by:

The water here condenses and gives off heat given by the product between its mass and the heat of vaporization:

The block of aluminum absorbs heat given by the product of its specific heat capacity, mass and the change in temperature:

According to the law of energy conservation, the heat lost is equal to the heat gained:
or:

Rearrange for the final temperature:

We obtain:

Then:

Answer:
The molarity of the solution is 0,31 M
Explanation:
We calculate the weight of 1 mol of NaCl from the atomic weights of each element of the periodic table. Then, we calculate the molarity, which is a concentration measure that indicates the moles of solute (in this case NaCl) in 1000ml of solution (1 liter)
Weight 1 mol NaCl= Weight Na + Weight Cl= 23 g + 35, 5 g= 58, 5 g
58, 5 g-----1 mol NaCl
13,1 g ---------x= (13,1 g x 1 mol NaCl)/58, 5 g= 0, 224 mol NaCl
727 ml solution------ 0, 224 mol NaCl
1000ml solution------x= (1000ml solutionx0, 224 mol NaCl)/727 ml solution
x=0,308 mol NaCl---> <em>The solution is 0,31 molar (0,31 M)</em>
CH₇ is the empirical formula of the car fuel.
Explanation:
To find the empirical formula we use the following algorithm.
First divide each mass the the molar weight of each element:
for carbon 2.87 / 12 = 0.239
for hydrogen 3.41 / 2 = 1.705
And now divide each quantity by the lowest number which is 0.239:
for carbon 0.239 / 0.239 = 1
for hydrogen 1.705 / 0.239 = 7.13 ≈ 7
The empirical formula of the car fuel is CH₇.
I have to tell you that in reality this formula is wrong because is not possible to exist. However the algorithm for finding the empirical formula is right, the problem may reside in the amounts of carbon and hydrogen given.
Learn more about:
empirical formula
brainly.com/question/5297213
#learnwithBrainly
Answer: Assuming the question: 3.54 ml (3 sig figs)
Explanation:
I don't see a question, but will assume it is "What volume is needed to obtain 26.5 grams?
If so:
(26.5 g)/(7.48 ml) = 3.54 ml (3 sig figs)