The question might have some mistake since there are 2 multiplier of t. I found a similar question as follows:
The population P(t) of a culture of bacteria is given by P(t) = –1710t^2+ 92,000t + 10,000, where t is the time in hours since the culture was started. Determine the time at which the population is at a maximum. Round to the nearest hour.
Answer:
27 hours
Step-by-step explanation:
Equation of population P(t) = –1710t^2+ 92,000t + 10,000
Find the derivative of the function to find the critical value
dP/dt = -2(1710)t + 92000
= -3420t + 92000
Find the critical value by equating dP/dt = 0
-3420t + 92000 = 0
92000 = 3420t
t = 92000/3420 = 26.90
Check if it really have max value through 2nd derivative
d(dP)/dt^2 = -3420
2nd derivative is negative, hence it has maximum value
So, the time when it is maximum is 26.9 or 27 hours
Answer: A. It would be shifted up.
Step-by-step explanation: the only thing that is changing in the two equations is the last number. The last number is not there in the second equation because the y-intercept is 0. The y-intercept in the first equation is -2 and shifts up 2 to y-intercept if 0. Therefore, your answer would be A. It would shift up.
1st it: g(2)=3(2)=6 || 2nd it: g^2(2)=3(6)=18 || 3rd it: g^3(2)=3(18)=54
Answer:
<em>The SUV is running at 70 km/h</em>
Step-by-step explanation:
<u>Speed As Rate Of Change
</u>
The speed can be understood as the rate of change of the distance in time. When the distance increases with time, the speed is positive and vice-versa. The instantaneous rate of change of the distance allows us to find the speed as a function of time.
This is the situation. A police car is 0.6 Km above the intersection and is approaching it at 60 km/h. Since the distance is decreasing, this speed is negative. On the other side, the SUV is 0.8 km east of intersection running from the police. The distance is increasing, so the speed should be positive. The distance traveled by the police car (y) and the distance traveled by the SUV (x) form a right triangle whose hypotenuse is the distance between them (d). We have:

To find the instant speeds, we need to compute the derivative of d respect to the time (t). Since d,x, and y depend on time, we apply the chain rule as follows:

Where x' is the speed of the SUV and y' is the speed of the police car (y'=-60 km/h)
We'll compute :


We know d'=20 km/h, so we can solve for x' and find the speed of the SUV

Thus we have

Solving for x'

Since y'=-60


The SUV is running at 70 km/h
The simplest form of the algebraic expression is x^-4y^-8/x^12y^-12 (Option B)
<h3>
What is simplification?</h3>
The term simplification is mathematics refers to the depiction of the expression in its lowest possible format. In the simplest form, the expression can not be simplified further.
Now we have the original expression as;
(xy^2/x^-3y^3)
The only possible step in the expansion is to open up the bracket by the laws of indices and we get;
x^-4y^-8/x^12y^-12 (Option B)
Learn more about algebraic expression:brainly.com/question/953809
#SPJ1