That mean something is suspicious because they are hiding something from u
Answer:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B-1%7D%7B4x%5E%5Cbigg%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
Exponential Properties
- Exponential Property [Rewrite]:

- Exponential Property [Root Rewrite]:
![\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Csqrt%5Bn%5D%7Bx%7D%20%3D%20x%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify.</em>
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D)
<u>Step 2: Differentiate</u>
- Simplify:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \bigg( \frac{1}{2\sqrt{x}} \bigg)'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cbigg%28%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D%20%5Cbigg%29%27)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{\sqrt{x}} \bigg)'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cbigg%28%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%7D%7D%20%5Cbigg%29%27)
- Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{x^\Big{\frac{1}{2}}} \bigg)'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cbigg%28%20%5Cfrac%7B1%7D%7Bx%5E%5CBig%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%20%5Cbigg%29%27)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( x^\bigg{\frac{-1}{2}} \bigg)'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cbigg%28%20x%5E%5Cbigg%7B%5Cfrac%7B-1%7D%7B2%7D%7D%20%5Cbigg%29%27)
- Derivative Rule [Basic Power Rule]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{-1}{2} x^\bigg{\frac{-3}{2}} \bigg)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cbigg%28%20%5Cfrac%7B-1%7D%7B2%7D%20x%5E%5Cbigg%7B%5Cfrac%7B-3%7D%7B2%7D%7D%20%5Cbigg%29)
- Simplify:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4} x^\bigg{\frac{-3}{2}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B-1%7D%7B4%7D%20x%5E%5Cbigg%7B%5Cfrac%7B-3%7D%7B2%7D%7D)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B-1%7D%7B4x%5E%5Cbigg%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Answer:
? We don't see any graphs to choose from
Step-by-step explanation:
Graph a dotted line (to show it's not included) with y-intercept 1 and slope 1/2. Test the origin (0, 0) in the inequality:
This is true, so shade the side of the line that the origin is on (above the line).
Next inequality...
Graph a solid line with y=intercept 1 and slope 1. Test the origin.
True! Shade the side of the line the origin is on (below the line). See image2, attached.
Graph a dotted line with y-intercept -1 and slope -2. Test the origin (0, 0).
True, so shade the side the origin is on (above the line).
The solutions are located where all the shadings intersect. See image3. The solutions are above the red line, above the green line and below the blue line.
Answer: x > -38
Step-by-step explanation:
7x - 42 < 8x - 4
-38 < x
x > -38
Answer:
a) 10.10 a.m. , (b) 10.20 a.m. which is 10 minutes after sprints start , (c) The students work at 10.50 a.m. , (d) For 60 minutes from 10 a.m. to 11 a.m. which equals to 1 hour