<h3>
Answer:</h3><h3>
</h3><h2>E. Coli </h2>
<h2>its a easy and faster answer to look at (;</h2>
Answer:
energy and the equilibrium constant.
The sign of the standard free energy change ΔG° of a chemical reaction determines whether the reaction will tend to proceed in the forward or reverse direction.
Similarly, the relative signs of ΔG° and ΔS° determine whether the spontaniety of a chemical reaction will be affected by the temperature, and if so, in what way.
ΔG is meaningful only for changes in which the temperature and pressure remain constant. These are the conditions under which most reactions are carried out in the laboratory; the system is usually open to the atmosphere (constant pressure) and we begin and end the process at room temperature (after any heat we have added or which is liberated by the reaction has dissipated.) The importance of the Gibbs function can hardly be over-stated: it serves as the single master variable that determines whether a given chemical change is thermodynamically possible. Thus if the free energy of the reactants is greater than that of the products, the entropy of the world will increase when the reaction takes place as written, and so the reaction will tend to take place spontaneously. Conversely, if the free energy of the products exceeds that of the reactants, then the reaction will not take place in the direction written, but it will tend to proceed in the reverse direction.
.................................................
Answer:
The answer to your question is 159.0 grams
Explanation:
data
mass of K₂O = ?
mass of K = 132 g
Process
1.- Balance the chemical reaction
Chemical reaction
K(s) + O₂ ⇒ K₂O
Reactants Elements Products
1 K 2
2 O 1
This reaction is unbalanced
4K(s) + O₂ ⇒ 2K₂O
Reactants Elements Products
4 K 4
2 O 2
Now the reaction is balanced
2.- Calculate the mass of K₂O
Atomic mass of K = 39 x 4 = 156 g
Molar mass of K₂O = 2[(39 x 2) + 16] = 188 g
156 g of K ------------------ 188 g of K₂O
132 g of K ----------------- x
x = (132 x 188) / 156
x = 159.0 grams
Answer:
The answer is false. See the explanation below, please
Explanation:
The equilibrium constant is the ratio of the concentrations of the products over the concentrations of the reactants.
See the example below:
A + B --> C + D
We calculate the Keq:
Keq = (C) x (D) / (A) x (B)