Answer:
b) Counter current
Explanation:
In mechanical, chemical, nuclear and other systems, it happens that heat must be transferred from one place to another or from one fluid to another. Heat exchangers are the devices that allow you to perform this task the types of exchangers are presented of heat as a function of flow: parallel flow; <u>counterflow</u>; cross flow.
Among the main reasons why exchangers are used
Heat are as follows:
• Heat a cold fluid using a fluid with a higher temperature.
• Reduce the temperature of a fluid by means of a fluid with a lower temperature.
• Bring the fluid to the boiling point using a fluid with a higher temperature.
• Condense a fluid in a gaseous state by means of a cold fluid
A backflow occurs when the two fluids flow in the same direction but in opposite way. Each of the fluids enters the exchanger through different ends Since the fluid with less temperature goes backflow from the heat exchanger at the end where the fluid enters with higher temperature, the temperature of the coldest fluid will approach the temperature of the inlet fluid.
This type of exchanger turns out to be more efficient than the other two types mentioned above. In contract with the exchanger parallel flow heat, the counterflow exchanger may have the highest temperature in the cold fluid and the lower temperature in the hot fluid after heat transfer in the exchanger.
<em>
Be careful with </em><u><em>turbulent</em></u><em> that it is not a type of exchanger but a system in which a fluid is found.</em>
<h3>
Answer:</h3>
121 mol CH₄
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Organic</u>
- Writing chemical compounds
- Writing organic structures
- Prefixes
- Alkanes, Alkenes, Alkynes
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
7.31 × 10²⁵ molecules CH₄
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
<u />
<u />
<u />
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
121.388 mol CH₄ ≈ 121 mol CH₄
Answer:
pH = 10.11
Explanation:
Hello there!
In this case, since it is possible to realize that this base is able to acquire one hydrogen atom from the water:

We can therefore set up the corresponding equilibrium expression:
![Kb=\frac{[C_{18}H_{21}NO_4H^+][OH^-]}{[C_{18}H_{21}NO_4]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BC_%7B18%7DH_%7B21%7DNO_4H%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BC_%7B18%7DH_%7B21%7DNO_4%5D%7D)
Which can be written in terms of the reaction extent,
:

Thus, by solving for
we obtain:

However, since negative solutions are now allowed, we infer the correct
is 0.0001285 M; thus, the pOH can be computed:

And finally the pH:

Best regards!
If the system is cooled, more of the products will be formed as the equilibrium shifts to the right.
Explanation:
The reaction is an endothermic reaction which absorbs heat from the environment. This is why we see energy on the reactant side.
This reaction is in equilibrium when energy is absorbed in this manner.
According to Le Chatelier's principle "if any of the conditions of a system in equilibrium is changed, the system will adjust itself in order to annul the effect of the change".
- A change in temperature of an equilibrium system shifts the system to a new equilibrium point.
- The backward reaction is favored by an increase in temperature because heat is absorbed in that step.
- This will eventually lead to the production of more of the product.
- Cooling the system will decrease the temperature and will favor the forward reaction.
- If the system is cooled, more of the products will be formed as the equilibrium shifts to the right.
- More NO gas will be produced in the process.
learn more:
Chemical equilibrium brainly.com/question/5877801
#learnwithBrainly
Answer: Mercury!!!!!!
Explanation:
Highs and lows. Orbiting between 28 and 43 million miles (46 and 70 million kilometers) from the sun, Mercury, also the smallest planet, feels the brunt of the solar rays. According to NASA, the tiny world suffers the most extreme temperature range of any other planet in the solar system.
Have great day!