Energy can be changed from one form to another, but it cannot be created or destroyed. ... This principle is referred to as the first law of thermodynamics or the law of energy conservation. The law applies to all systems both large and small, and, again, it states that energy cannot be created or destroyed.
Answer:
a = g = 9.81[m/s^2]
Explanation:
This problem can be solve using the second law of Newton.
We know that the forces acting over the skydiver are only his weight, and it is equal to the product of the mass by the acceleration.
m*g = m*a
where:
g = gravity = 9.81[m/s^2]
a = acceleration [m/s^2]
Note: If the skydiver will be under air resistance forces his acceleration will be different.
Answer: 2812500 joules
Explanation:
Mass of car = 1500kg
Velocity of car = 75mph
Kinetic energy = ?
Recall that kinetic energy is the energy possessed by a moving object, and it depends on its mass M and velocity, V
Thus, Kinetic energy = 1/2 x mv^2
= 1/2 x 1000kg x (75mph)^2
= 0.5 x 1000kg x (75mph)^2
= 500 x 5625
= 2812500 joules
Thus, the car travels with a kinetic energy of 2812500 joules
Each station can detect how far away the epicenter was. So each station basically has a circle made of possible epicenters. When you have three, you narrow it down to one, final point.
Answer: Take your pick
Explanation:
if they are all in parallel 1 /(1/100 + 1/300 + 1/50) = 30 Ω
if 50 is in parallel with 2 in series 1 / (1/(100 + 300) + 1/50) = 44.444...Ω
if 100 is in parallel with 2 in series 1 / (1/(50 + 300) + 1/100) = 77.777...Ω
if 300 is in parallel with 2 in series 1 / (1/(100 + 50) + 1/300) = 100 Ω
If 50 is in series with 2 in parallel 50 + 1/(1/100 + 1/300) = 125 Ω
If 100 is in series with 2 in parallel 100 + 1/(1/50 + 1/300) = 142.857...Ω
If 300 is in series with 2 in parallel 300 + 1/(1/50 + 1/100) = 333.333...Ω
If they are all in series 100 + 300 + 50 = 450 Ω