Answer:
Cs and I
Explanation:
Salts are formed when an ionic bond is formed between two elements in the compound. Let us recall that the kind of bond formed between any two elements depends on the magnitude of electronegativity difference between the two elements.
Among the options listed, the highest degree of electronegativity difference occurs for the bond between Cs and I. This implies that this bond is ionic and the combination of the two elements will lead to salt formation.
Answer:
d.
Explanation:
proposed the ring structure for benezene
Answer:
The concentration of HA is the same as concentration of H3O+ and A- produced.
Explanation:
The dissociation equation is given below:
HA(aq) + H2O (l) —> H3O+(aq) + A-(aq)
From the reaction above, we can see that the acid is monoprotic acid i.e it has only 1 ionisable hydrogen atom.
Now, from the balanced equation, we can see that the acid produced equal concentration of H3O+ and A-.
This account for the reason why the bars for H3O+ and A- have the same height as the bar for HA.
Answer:
<h2> 162g/mol</h2>
Explanation:
The question is incomplete. The complete question includes the information to find the empirical formula of nicotine:
<em>Nicotine has the formula </em>
<em> . To determine its composition, a sample is burned in excess oxygen, producing the following results:</em>
<em>Assume that all the atoms in nicotine are present as products </em>
<h2>Solution</h2>
To find the empirical formula you need to find the moles of C, H, and N in each of the compound.
- 1.0 mol of CO₂ has 1.0 mol of C
- 0.70 mol of H₂O has 1.4 mol of H
- 0.20 mol of NO₂ has 0.20 mol of N
Thus, the ratio of moles is:
Divide all by the smallest number: 0.20
Hence, the empirical formula is C₅H₇N
Find the mass of 1 mole of units of the empirical formula:
Total mass = 60g + 7g + 14g = 81g
Two moles of units of the empirical formula weighs 2 × 81g = 162g and three units weighs 3 × 81g = 243 g.
Thus, since the molar mass is between 150 and 180 g/mol, the correct molar mass is 162g/mol and the molecular formula is twice the empirical formula: C₁₀H₁₄N₂.