Answer:
A. Gas atoms subjected to electricity emit bright lines of light
Explanation:
When subjected to electricity, the electrons of a gas atom are <em>excited</em>. From that excited energy level, the electrons eventually go back to their initial state; this <u>transition</u> is done by emitting photons at a specific wavelength (causing an emission of bright lines of light).
Such is the mechanism of gas-discharge lamps tipically found in households.
25.9 kJ/mol. (3 sig. fig. as in the heat capacity.)
<h3>Explanation</h3>
The process:
.
How many moles of this process?
Relative atomic mass from a modern periodic table:
- K: 39.098;
- N: 14.007;
- O: 15.999.
Molar mass of
:
.
Number of moles of the process = Number of moles of
dissolved:
.
What's the enthalpy change of this process?
for
. By convention, the enthalpy change
measures the energy change for each mole of a process.
.
The heat capacity is the least accurate number in these calculation. It comes with three significant figures. As a result, round the final result to three significant figures. However, make sure you keep at least one additional figure to minimize the risk of rounding errors during the calculation.
First step is to get the mass of water molecule in grams:
From the periodic table:
molar mass of hydrogen is 1
molar mass of oxygen is 16
molar mass of a water molecule = 2(1) + 16 = 18 gm
Now, to convert the gm into amu, all you have to do is multiply the gm you got by Avogadro's number as follows:
mass of water molecule = 18 x 6.22 x 10^23 = 1.1196 x 10^25 amu which is approximately 1 x 10^25 amu
Answer:
a number of people or things that are located close together or are considered or classed together.
Explanation:
B because it had bones and the others don’t