Answer:
Desert
Explanation:
The adaptation shown by the given plants and animals shows that they will adapted to the desert biome.
It is so because, due to high temperature of desert some desert animals like camel have the storage of fat in humps or tails; some animals have large ears such as Jackrabbits, it helps to release body heat and adapt in high temperature; plants have thick water holding tissues to reduce water loss in heat and waxy coating that keeps the plants cooler and reduce moisture loss.
Hence, the correct answer is "Desert".
Answer: A) 3.21 g
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side.

We are given:
Mass of iron = 5.58 g
Mass of iron sulphide = 8.79 g
Mass of sulphur = x g
Total mass on reactant side = 5.58 + x
Total mass on product side = 8.79 g
Applying law of conservation of mass, we get:
Hence, the mass of reacting sulfur is 3.21 g.
Answer:
If the temperature increases the molecular movement as well, and if it increases the same it will happen with the molecular movement.
Pressure, volume and temperature are three factors that are closely related since they increase the temperature, the pressure usually decreases due to the dispersion of the molecules that can be generated, so the volume also increases.
If the temperature drops, the material becomes denser, its molecules do not collide with each other, their volume and pressure increases.
Explanation:
The pressure is related to the molecular density and the movement that these molecules have.
The movement is regulated by temperature, since if it increases, the friction and collision of the molecules also.
On the other hand, the higher the volume, the less pressure there will be on the molecules, since they are more dispersed among themselves.
(in the opposite case that the volume decreases, the pressure increases)
3Fe + 4H2O (yields) Fe3O4 + 4H2
The answer is potassium magnate