Answer:
Step-by-step explanation:
11 t= -5 17 r = 27
12 n= -1 18 k = -20
13 m=-5
14 x= - 11
15 y = 70
16 f = - 70
Draw a square with side length of 4. All four angles are 90 degrees and all four sides are 4.
Then draw a rectangle with length of 9 and with of 2. All four angles would be 90 degrees, but the proportion of the 2 sides are different when compared to the sides of the square.
Answer:
∠1 is 33°
∠2 is 57°
∠3 is 57°
∠4 is 33°
Step-by-step explanation:
First off, we already know that ∠2 is 57° because of alternate interior angles.
Second, it's important to know that rhombus' diagonals bisect each other; meaning they form 90° angles in the intersection. Another cool thing is that the diagonals bisect the existing angles in the rhombus. Therefore, 57° is just half of something.
Then, you basically just do some other pain-in-the-butt things after.
Since that ∠2 is just the bisected half from one existing angle, that means that ∠3 is just the other half; meaning that ∠3 is 57°, as well.
Next is to just find the missing angle ∠1. Since we already know ∠3 is 57°, we can just add that to the 90° that the diagonals formed at the intersection.
57° + 90° = 147°
180° - 147° = 33°
∠1 is 33°
Finally, since that ∠4 is just an alternate interior angle of ∠1, ∠4 is 33°, too.
The equation is 10 + 2x= 56; 56 - 10= 46; 46 ÷ 2= 23,
The answer is 23 people.
Hope this helps :)
Answer: 120 ways
Step-by-step explanation: In this problem, we're asked how many ways can 5 people be arranged in a line.
Let's start by drawing 5 blanks to represent the 5 different positions in the line.
Now, we know that 5 different people can fill the spot in the first position. However, once the first position is filled, only 4 people can fill the second spot and once the second spot is filled, only 3 people can fill the third spot and so on. So we have <u>5</u> <u>4</u> <u>3</u> <u>2</u> <u>1</u>.
Now, based on the counting principle, there are 5 x 4 x 3 x 2 x 1 ways for all 5 spots to be filled.
5 x 4 is 20, 20 x 3 is 60, 60 x 2 is 120, and 120 x 1 is 120.
So there are 120 ways for all 5 spots to be filled which means that there are 120 ways that 5 people can be arranged in a line.
I have also shown my work on the whiteboard in the image attached.