We need (i) the stoichiometric equation, and (ii) the equivalent mass of dihydrogen.
Explanation:
1
2
N
2
(
g
)
+
3
2
H
2
(
g
)
→
N
H
3
(
g
)
11.27
g
of ammonia represents
11.27
⋅
g
17.03
⋅
g
⋅
m
o
l
−
1
=
?
?
m
o
l
.
Whatever this molar quantity is, it is clear from the stoichiometry of the reaction that 3/2 equiv of dihydrogen gas were required. How much dinitrogen gas was required?
Answer:
The answer to your question is C₂HO₃
Explanation:
Data
Hydrogen = 3.25%
Carbon = 19.36%
Oxygen = 77.39%
Process
1.- Write the percent as grams
Hydrogen = 3.25 g
Carbon = 19.36 g
Oxygen = 77.39 g
2.- Convert the grams to moles
1 g of H ----------------- 1 mol
3,25 g of H ------------- x
x = (3.25 x 1) / 1
x = 3.25 moles
12 g of C ---------------- 1 mol
19.36 g of C ---------- x
x = (19.36 x 1) / 12
x = 1.61 moles
16g of O --------------- 1 mol
77.39 g of O --------- x
x = (77.39 x 1)/16
x = 4.83
3.- Divide by the lowest number of moles
Carbon = 3.25/1.61 = 2
Hydrogen = 1.61/1.61 = 1
Oxygen = 4.83/1.61 = 3
4.- Write the empirical formula
C₂HO₃
There are 3 moles of

<span>per 1 mole of salt and 1 mole of

</span>per mole of salt, the total ionic concentrations must be

of

, and

of
If you want the answer is centimeters is it going to be:
26.281 cm
If it make it easier for you to solve add 6.201 and 7.4 which will equal 13.601. Then add .68 to 13.601 which equals 14.281. Last add 12 to 14.281 which equals 26.281.
Hope this helps.