The properties which keep the water temperature from changing much are;
- water's high specific heat capacity
- the large mass of water
<h3>What is specific heat capacity?</h3>
The specific heat capacity is the property of a substance that shows how much its temperature changes when it is exposed to heat.
Thus, the properties which keep the water temperature from changing much are;
- water's high specific heat capacity
- the large mass of water
Missing parts:
A red-hot iron nail is immersed in a large bucket of water. Although the nail cools down sufficiently to be held bare-handed, the temperature of the water barely increases. Which properties keep the water temperature from changing much?
A.) water's high heat conductivity
B.) water's high specific heat capacity
C.) the iron nail's high heat conductivity
D.) the large mass of water
E.) the iron nail's high specific heat capacity
Learn more about heat capacity:brainly.com/question/12244241
#SPJ1
Answer:
A is denser than B as it's volume for the same mass is smaller.
Explanation:
Hello.
In this case, we first need to take into account that the density of each metal A and B is computed by dividing the mass over the volume of each metal which is actually computed by substracting the volume of water from the volume of the water and the solid:
Next, we compute the densities as shown below:
In such a way, A is denser is B as it's volume for the same mass is smaller.
Best regards.
Answer:
C. The lowest-energy electron configuration of an atom has the maximum number of unpaired electrons, all of which have the same spin, in degenerate orbitals.
Explanation:
The Hund's rule is used to place the electrons in the orbitals is it states that:
1. Every orbital in a sublevel is singly occupied before any orbital is doubly occupied;
2. All of the electrons in singly occupied orbitals have the same spin.
So, the electrons first seek to fill the orbitals with the same energy (degenerate orbitals) before paring with electrons in a half-filled orbital. Orbitals doubly occupied have greater energy, so the lowest-energy electron configuration of an atom has the maximum number of unpaired electrons, and for the second statement, they have the same spin.
The other alternatives are correct, but they're not observed by the Hund's rule.
The molecular mass of the immunoglobulin G, given the data from the question is 1.53×10⁵ g/mole
<h3>How to determine the molarity</h3>
We'll begin by calculating the molarity of the immunoglobulin G. This is illustrated below:
- Volume = 0.106 L
- Temperature (T) = 25 °C = 25 + 273 = 298 K
- Osmotic pressure (π) = 0.733 mbar = 0.733 × 0.000987 = 0.00072 atm
- Gas constant (R) = 0.0821 atm.L/Kmol
- Van't Hoff factor (i) = 1
- Molarity (M)
π = iMRT
M = π / iRT
M = 0.00072 / (1 × 0.0821 × 298)
M = 0.000029 M
<h3>How to determine the mole of immunoglobulin G</h3>
- Molarity = 0.000029 M
- Volume = 0.106 L
- Mole =?
Mole = Molarity × volume
Mole = 0.000029 × 0.106
Mole = 3.074×10⁻⁶ mole
<h3>How to determine the molar mass of mmunoglobulin G</h3>
- Mole = 3.074×10⁻⁶ mole
- Mass = 0.470 g
- Molar mass =?
Molar mass = mass / mole
Molar mass = 0.47 / 3.074×10⁻⁶
Molar mass = 1.53×10⁵ g/mole
Learn more about Osmotic pressure:
brainly.com/question/5925156
#SPJ1