The volume of a cube is the length of one side cubed, therefore the side length of the cube is the cubed root of the volume. Using a calculator to find the cubed root, you find that it is 0.4 meters, or answer C.
Therefore the solution is 0.4 meters; answer C.
The digit 7 would be ten times greater than the digit 7 in number 0.9750 in any number with 7 in the tenths place, for example
0.723
0.7669
0.775
1.7899
Answer:
The two numbers following 1,-2,3,-4,5... are -6 and 7.
Step-by-step explanation:
index: 1 2 3 4 5 ....
value: 1 -2 3 -4 5
Let the index be n. Then the first term is a(1), the secon is a(2), and so on.
a(2) = 2*(-1)^(2-1) = 2*(-1) = -2 (correct)
a(3) = 3*(-1)^(3-1) = 3*(-1)^2 = 3 (correct)
a(4) = 4*(-1)^(4-1) = 4*(-1)^3 = -4 (correct)
So the general formula for a(n) is: a(n)=n(-1)^(n-1)
Thus,
a(5) = 5(-1)^4 = 5
a(6) = 6(-1)^5 = -6
a(7) = 7(-1)^6 = 7
The "next two numbers in the pattern" are -6 and 7. The first 7 numbers are
1,-2,3,-4,5, -6, 7
Exp prob (red) = 24 / 60 = 4 / 10 = 2/5
Theoretical prob (red) = (1/2)
Exp prob (blue) = 14 / 60 = 7 / 30
Theoretical prob (blue) = 1/6
Exp prob ( yellow) = 22/ 60 = 11/30
Theoretical prob ( yellow) = 2/6 = 1/3
![\bf \begin{array}{lllll} round(x)&\boxed{1}&2&3&\boxed{4}\\\\ wrestlers[f(x)]&\boxed{64}&32&18&\boxed{9} \end{array} \\\\\\ slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{{{ f(x_2)}}-{{ f(x_1)}}}{{{ x_2}}-{{ x_1}}}\impliedby \begin{array}{llll} average\ rate\\ of\ change \end{array}\\\\ -------------------------------\\\\ f(x)= \qquad \begin{cases} x_1=1\\ x_2=4 \end{cases}\implies \cfrac{f(4)-f(1)}{4-1}\implies \cfrac{9-64}{4-1}\implies \cfrac{-55}{3}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Blllll%7D%0Around%28x%29%26%5Cboxed%7B1%7D%262%263%26%5Cboxed%7B4%7D%5C%5C%5C%5C%0Awrestlers%5Bf%28x%29%5D%26%5Cboxed%7B64%7D%2632%2618%26%5Cboxed%7B9%7D%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%0Aslope%20%3D%20%7B%7B%20m%7D%7D%3D%20%5Ccfrac%7Brise%7D%7Brun%7D%20%5Cimplies%20%0A%5Ccfrac%7B%7B%7B%20f%28x_2%29%7D%7D-%7B%7B%20f%28x_1%29%7D%7D%7D%7B%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%7D%5Cimpliedby%20%0A%5Cbegin%7Barray%7D%7Bllll%7D%0Aaverage%5C%20rate%5C%5C%0Aof%5C%20change%0A%5Cend%7Barray%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0Af%28x%29%3D%20%20%20%5Cqquad%20%0A%5Cbegin%7Bcases%7D%0Ax_1%3D1%5C%5C%0Ax_2%3D4%0A%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7Bf%284%29-f%281%29%7D%7B4-1%7D%5Cimplies%20%5Ccfrac%7B9-64%7D%7B4-1%7D%5Cimplies%20%5Ccfrac%7B-55%7D%7B3%7D)
55 over 3, or 55 wrestlers for every 3 rounds, but the wrestlers value is negative, thus 55 "less" wrestlers for every 3 rounds on average.