Answer:
t = 3.35 s
Explanation:
It is given that,
Mass of a pumpkin, m = 8 kg
It is dropped from a height of 55 m
We need to find the time taken by it to hit the ground.
Initial velocity of the pumpkin, u = 0
Using second equation of motion to find it as follows :

So, it will take 3.35 seconds to hit the ground.
Answer:
Explanation:
Given that
Beam current (i)=23.3µA
And the time to strike(t)=28s
Also, a fundamental charge e=1.602×10^-19C
Then, the charge quantity is given as,
q=it
Then, q=23.3×10^-6×28
q=6.524×10^-4C
Also, the number of electron N is given as
q=Ne
Therefore, N=q/e
So, N=6.524×10-4/1.602×10^-19
N=4.072×10^15
There are 4.072×10^15 electrons strike the tube screen every 28 s.
Answer:
A. 52 min
.A. 47 watts
Explanation:
Given that;
jim weighs 75 kg
and he walks 3.3 mph; the objective here is to determine how long must he walk to expend 300 kcal.
Using the following relation to determine the amount of calories burned per minute while walking; we have:

here;
MET = energy cost of a physical activity for a period of time
Obtaining the data for walking with a speed of 3.3 mph From the standard chart for MET, At 3.3 mph; we have our desired value to be 4.3
However;
the calories burned in a minute = 
= 5.644
Therefore, for walking for 52 mins; Jim burns approximately 293.475 kcal which is nearest to 300 kcal.
4.
Given that:
mass m = 75 kg
intensity = 6 kcal/min
The eg ergometer work rate = ??
Applying the formula:

where ;



∴
Converting to watts;
Since; 6.118kg-m/min is = 1 watt
Then 291.66 kgm /min will be equal to 47.67 watts
≅ 47 watts
The french revolution led to many deaths and impacted history because of the amount of life lost