Answer:
its like to orginized your stuff and at the end have a answer
Answer:
Complete question:
c.If the current in the second coil increases at a rate of 0.365 A/s , what is the magnitude of the induced emf in the first coil?
a.
b.flux through each turn = Ф = 
c.magnitude of the induced emf in the first coil = e= 
Explanation:
a. rate of current changing =
[/tex]
Induced emf in the coil =e= 
For mutual inductance in which change in flux in one coil induces emf in the second coil given by the farmula based on farady law



b.
Flux through each turn=?
Current in the first coil =1.25 A
Number of turns = 20
using MI = NФ
flux through each turn = Ф = 
flux through each turn = Ф = 
c.
second coil increase at a rate = 0.365 A/s
magnitude of the induced emf in the first coil =?
using 

magnitude of the induced emf in the first coil = e= 
The energy travels in a disturbance, in an ocean that disturbance is a wave, so the wave makes energy and moves it through the water
Answer:
Ans is 200 J
Explanation:
Given: Force = 20N
Distance = 10m
Work done = Force * displacement
= 20 * 10
= 200 J
Answer: -1.27 m/s^2
Explanation:
a = - V^2 / 2x
a = -(25^2) / 2 x (246) = 1.27 m/ s^2
Therefore the linear acceleration of the wheel is - 1.27 m/s^2