1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lorico [155]
3 years ago
6

Important result of french revolution

Physics
1 answer:
qaws [65]3 years ago
8 0
The french revolution led to many deaths and impacted history because of the amount of life lost
You might be interested in
What is TRUE of carbon monoxide?
Aleks04 [339]

¡Hello!

Carbon monoxide is an odorless, colorless and tasteless gas produced by the incomplete combustion of carbon in fossil fuels such as wood, propane, charcoal, oil, gas, coal or other fuel.

6 0
2 years ago
In order for a ball to move upward, the initial velocity of the ball must be greater than _____.
ch4aika [34]

Answer:

The answer is zero please Give me Brainly

Explanation:

5 0
2 years ago
Compare the circular velocity of a particle orbiting in the Encke Division, whose distance from Saturn 133,370 km, to a particle
Ket [755]

Answer:

The particle in the D ring is 1399 times faster than the particle in the Encke Division.

Explanation:

The circular velocity is define as:

v = \frac{2 \pi r}{T}  

Where r is the radius of the trajectory and T is the orbital period

To determine the circular velocity of both particles it is necessary to know the orbital period of each one. That can be done by means of the Kepler’s third law:

T^{2} = r^{3}

Where T is orbital period and r is the radius of the trajectory.

Case for the particle in the Encke Division:

T^{2} = r^{3}

T = \sqrt{(133370 Km)^{3}}

T = \sqrt{(2.372x10^{15} Km)}

T = 4.870x10^{7} Km

It is necessary to pass from kilometers to astronomical unit (AU), where 1 AU is equivalent to 150.000.000 Km ( 1.50x10^{8} Km )

1 AU is defined as the distance between the earth and the sun.

\frac{4.870x10^{7} Km}{1.50x10^{8}Km} . 1AU

T = 0.324 AU

But 1 year is equivalent to 1 AU according with Kepler’s third law, since 1 year is the orbital period of the earth.

T = \frac{0.324 AU}{1 AU} . 1 year

T = 0.324 year

That can be expressed in units of days

T = \frac{0.324 year}{1 year} . 365.25 days  

T = 118.60 days

<em>Circular velocity for the particle in the </em><em>Encke Division</em><em>:</em>

v = \frac{2 \pi r}{T}

v = \frac{2 \pi (133370 Km)}{(118.60 days)}

For a better representation of the velocity, kilometers and days are changed to meters and seconds respectively.

118.60 days .\frac{86400 s}{1 day} ⇒ 10247040 s

133370 Km .\frac{1000 m}{1 Km} ⇒ 133370000 m

v = \frac{2 \pi (133370000 m)}{(10247040 s)}

v = 81.778 m/s

Case for the particle in the D Ring:

For the case of the particle in the D Ring, the same approach used above can be followed

T^{2} = r^{3}

T = \sqrt{(69000 Km)^{3}}

T = \sqrt{(3.285x10^{14} Km)}

T = 1.812x10^{7} Km

\frac{1.812x10^{7} Km}{1.50x10^{8}Km} . 1 AU

T = 0.120 AU

T = \frac{0.120 AU}{1 AU} . 1 year

T = 0.120 year

T = \frac{0.120 year}{1 year} . 365.25 days  

T = 43.83 days

<em>Circular velocity for the particle in </em><em>D Ring</em><em>:</em>

v = \frac{2 \pi r}{T}

v = \frac{2 \pi (69000 Km)}{(43.83 days)}

For a better representation of the velocity, kilometers and days are changed to meters and seconds respectively.

43.83 days . \frac{86400 s}{1 day} ⇒ 3786912 s

69000 Km . \frac{1000 m}{ 1 Km} ⇒ 69000000 m

v = \frac{2 \pi (69000000 m)}{(3786912 s)}

v = 114.483 m/s

 

\frac{114.483 m/s}{81.778 m/s} = 1.399            

The particle in the D ring is 1399 times faster than the particle in the Encke Division.  

7 0
3 years ago
A Ping-Pong ball with mass 2.5 g is attached by a thread to the bottom of a beaker. When the beaker is filled with water so that
dimaraw [331]

Answer:

0.022m or 2.2cm

Expxlanation:

Step 1:

Data obtained from the question. This includes:

Mass (m) = 2.5g = 2.5/1000 = 2.5x10^-3Kg

Tension (T) = 0.029 N

Density (ρ) = 1000 kg/m3

Acceleration due to gravity (g) = 9.81 m/s2

Diameter (d) =?

Step 2:

Finding an expression to calculate the diameter of the ball. This is illustrated below:

Tension = weight displaced - weight of the ball

Weight displaced = Mass of water x acceleration due to gravity

Mass of water = Density x volume

Mass of water = ρxV

Weight displaced = ρxVxg = ρVg

Weight of the ball = Mass of the ball x acceleration due to gravity

Weight of the ball = mg

Therefore,

Tension = weight displaced - weight of the ball

T = ρVg - mg

Make V the subject of the formula

T = ρVg - mg

T + mg = ρVg

Divide both side by ρg

V = ( T + mg) /ρg. (1)

Recall that the ball is spherical in shape and the Volume of a sphere is given by

V = 4/3πr^3

Radius (r) = diameter (d) /2

V = 4/3π(d/2)^3

V = 4/3πd^3/8

V = πd^3 /6

Substituting the value of V into equation 1, we have

V = ( T + mg) /ρg

πd^3 /6 = ( T + mg) /ρg.

Making d the subject of the formula, we have:

πd^3 /6 = (T + mg) /ρg.

d^3 = 6(T + mg) /πρg.

Taking the cube root of both sides

d = [6(T + mg) /πρg]^1/3

Step 3:

Determination of the diameter of the ball. This is illustrated below:

T = 0.029 N

m = 2.5x10^-3Kg

g = 9.81 m/s2

ρ = 1000 kg/m3

d =?

d = [6(T + mg) /πρg]^1/3

d = [6(0.029 + 2.5x10^-3x9.81)/ πx1000x9.81]^1/3

d = 0.022m

Therefore, the diameter of the ball is 0.022m or 2.2cm

6 0
3 years ago
What is the kinetic energy of a 55 kilogram skier traveling at meters per second
Rasek [7]
How many meters per second was it traveling
4 0
3 years ago
Other questions:
  • A 1500 kg car is approaching a hill that has a height of 12 m. As the car reaches the bottom of the hill it runs out of gas and
    8·1 answer
  • The bohr model of the atom addressed the problem of
    8·1 answer
  • ________ occurs when an object in the outer reaches of the solar system passes between earth and a far distant star, temporarily
    6·1 answer
  • An object is electrically charged if the amounts of positive and negative charge it contains are not _______.
    7·2 answers
  • significant figures are digits read directly from measuring instrument plus one more digit, which is ______ by the observer
    8·2 answers
  • One day, after pulling down your window shade, you notice that sunlight is passing through a pinhole in the shade and making a s
    7·1 answer
  • Which element has 24 protons
    8·1 answer
  • You lift a stuffed toy up above the ground (over your head).
    5·1 answer
  • a woman is swimming across a cold lake. her body temperature is 98 degrees fahrenheit , and the lake water is at 60 degrees fahr
    9·1 answer
  • Drag each label to the correct location on the table. sort the processes based on the type of energy transfer they involve. cond
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!