2x + y = 1
3x - y = -6
---------------add
5x = -5
x = -5/5
x = -1
2(-1) + y = 1
-2 + y = 1
y = 1 + 2
y = 3
solution is (-1,3)
Answer:
105 dollars after a year
Step-by-step explanation:
I = (100)(0.05)(1)
I = 5
Answer:
865
Step-by-step explanation:
We have that in 95% confidence level the value of z has a value of 1.96. This can be confirmed in the attached image of the normal distribution.
Now we have the following formula:
n = [z / E] ^ 2 * (p * q)
where n is the sample size, which is what we want to calculate, "E" is the error that is 2% or 0.02. "p" is the probability they give us, 5 out of 50, is the same as 1 out of 10, that is 0.1. "q" is the complement of p, that is, 1 - 0.1 = 0.9, that is, the value of q is 0.9.
Replacing these values we are left with:
n = [1.96 / 0.02] ^ 2 * [(0.1) * (0.9)]
n = 864.36
865 by rounding to the largest number.
Answer:
(a) The average cost function is 
(b) The marginal average cost function is 
(c) The average cost approaches to 95 if the production level is very high.
Step-by-step explanation:
(a) Suppose
is a total cost function. Then the average cost function, denoted by
, is

We know that the total cost for making x units of their Senior Executive model is given by the function

The average cost function is

(b) The derivative
of the average cost function, called the marginal average cost function, measures the rate of change of the average cost function with respect to the number of units produced.
The marginal average cost function is

(c) The average cost approaches to 95 if the production level is very high.
![\lim_{x \to \infty} (\bar{C}(x))=\lim_{x \to \infty} (95+\frac{230000}{x})\\\\\lim _{x\to a}\left[f\left(x\right)\pm g\left(x\right)\right]=\lim _{x\to a}f\left(x\right)\pm \lim _{x\to a}g\left(x\right)\\\\=\lim _{x\to \infty \:}\left(95\right)+\lim _{x\to \infty \:}\left(\frac{230000}{x}\right)\\\\\lim _{x\to a}c=c\\\lim _{x\to \infty \:}\left(95\right)=95\\\\\mathrm{Apply\:Infinity\:Property:}\:\lim _{x\to \infty }\left(\frac{c}{x^a}\right)=0\\\lim_{x \to \infty} (\frac{230000}{x} )=0](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%28%5Cbar%7BC%7D%28x%29%29%3D%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%2895%2B%5Cfrac%7B230000%7D%7Bx%7D%29%5C%5C%5C%5C%5Clim%20_%7Bx%5Cto%20a%7D%5Cleft%5Bf%5Cleft%28x%5Cright%29%5Cpm%20g%5Cleft%28x%5Cright%29%5Cright%5D%3D%5Clim%20_%7Bx%5Cto%20a%7Df%5Cleft%28x%5Cright%29%5Cpm%20%5Clim%20_%7Bx%5Cto%20a%7Dg%5Cleft%28x%5Cright%29%5C%5C%5C%5C%3D%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%2895%5Cright%29%2B%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%28%5Cfrac%7B230000%7D%7Bx%7D%5Cright%29%5C%5C%5C%5C%5Clim%20_%7Bx%5Cto%20a%7Dc%3Dc%5C%5C%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%2895%5Cright%29%3D95%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3AInfinity%5C%3AProperty%3A%7D%5C%3A%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%7D%5Cleft%28%5Cfrac%7Bc%7D%7Bx%5Ea%7D%5Cright%29%3D0%5C%5C%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%28%5Cfrac%7B230000%7D%7Bx%7D%20%29%3D0)
