25^4
The answer is 390625 so the third one
25^4
<u>Step-by-step explanation:</u>
transform the parent graph of f(x) = ln x into f(x) = - ln (x - 4) by shifting the parent graph 4 units to the right and reflecting over the x-axis
(???, 0): 0 = - ln (x - 4)

0 = ln (x - 4)

1 = x - 4
<u> +4 </u> <u> +4 </u>
5 = x
(5, 0)
(???, 1): 1 = - ln (x - 4)

1 = ln (x - 4)

e = x - 4
<u> +4 </u> <u> +4 </u>
e + 4 = x
6.72 = x
(6.72, 1)
Domain: x - 4 > 0
<u> +4 </u> <u>+4 </u>
x > 4
(4, ∞)
Vertical asymptotes: there are no vertical asymptotes for the parent function and the transformation did not alter that
No vertical asymptotes
*************************************************************************
transform the parent graph of f(x) = 3ˣ into f(x) = - 3ˣ⁺⁵ by shifting the parent graph 5 units to the left and reflecting over the x-axis
Domain: there is no restriction on x so domain is all real number
(-∞, ∞)
Range: there is a horizontal asymptote for the parent graph of y = 0 with range of y > 0. the transformation is a reflection over the x-axis so the horizontal asymptote is the same (y = 0) but the range changed to y < 0.
(-∞, 0)
Y-intercept is when x = 0:
f(x) = - 3ˣ⁺⁵
= - 3⁰⁺⁵
= - 3⁵
= -243
Horizontal Asymptote: y = 0 <em>(explanation above)</em>
The answer is 2 because 2+2-2*2/2
=4-2*1
=4-2
=2
Answers:
- Part A) There is one pair of parallel sides
- Part B) (-3, -5/2) and (-1/2, 5/2)
====================================================
Explanation:
Part A
By definition, a trapezoid has exactly one pair of parallel sides. The other opposite sides aren't parallel. In this case, we'd need to prove that PQ is parallel to RS by seeing if the slopes are the same or not. Parallel lines have equal slopes.
------------------------
Part B
The midsegment has both endpoints as the midpoints of the non-parallel sides.
The midpoint of segment PS is found by adding the corresponding coordinates and dividing by 2.
x coord = (x1+x2)/2 = (-4+(-2))/2 = -6/2 = -3
y coord = (y1+y2)/2 = (-1+(-4))/2 = -5/2
The midpoint of segment PS is (-3, -5/2)
Repeat those steps to find the midpoint of QR
x coord = (x1+x2)/2 = (-2+1)/2 = -1/2
y coord = (x1+x2)/2 = (3+2)/2 = 5/2
The midpoint of QR is (-1/2, 5/2)
Join these midpoints up to form the midsegment. The midsegment is parallel to PQ and RS.
Answer is C. 1/169
first we find how many cards are jacks in a deck: 4 out of 52 cards.
4/52 = 1/13 ( We have a 1 in 13 chance of drawing a jack)
(1/13)(1/13) = 1/169
( because the first card is replaced, we know that we don't have to change probabilities)(it will still be a 4/52 chance of drawing a jack)